summaryrefslogtreecommitdiff
path: root/src/pk.h
blob: bb8fe24d489671bb912035c16ecd9167cf314c2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
#ifndef PK_SINGLE_HEADER_FILE_H
#define PK_SINGLE_HEADER_FILE_H
/*******************************************************************************
* PK Single-Header-Library V0.9.8
*
* Author:           Jonathan Bradley
* Copyright:        © 2024-2025 Jonathan Bradley
* Description:
*
* A collection of useful programming tools, available for C and C++ as a
*  single-header file. To enable, in ONE single C or C++ file, declare
*  PK_IMPL_ALL before including pk.h.
*
* Example:
*
* pk.h.include.c
* ``` c
* #define PK_IMPL_ALL
* #include "pk.h"
* ```
*
* It is also possible to enable modules ad-hoc by defining each IMPL
*  individually:
*
* pk.h.include.c
* ``` c
* # define PK_IMPL_MEM_TYPES
* # define PK_IMPL_MEM
* # define PK_IMPL_STR
* # define PK_IMPL_EV
* # define PK_IMPL_ARR
* # define PK_IMPL_STN
* #include "pk.h"
* ```
*
********************************************************************************
* pkmacros.h:
*
* Provides a set of useful macros for a variety of uses.
*
* The macros PK_LOG* provide simple logging utilities. These can be overridden
*  by providing your own implementations of each and defining PK_LOG_OVERRIDE
*  before including pk.h Note that each of these are no-op'd if NDEBUG is
*  defined.
*
* The TypeSafeInt_H and TypeSafeInt_B macros provide a way to define
*  type-specific integers, implemented via enums.
*
********************************************************************************
* pktmpl.h: only contains c++ templates, no IMPL.
*
* Provides template structs for trampolines, allowing c-style callbacks with
*  capturing lambdas.
*
* Examples:
* ```c++
* int some_counter = 0;
* using IterCbWrapper = pk_tmpln_1<void, int*, void*>;
* IterCbWrapper cb_wrapper{};
* cb_wrapper.func = [&some_counter](int *lhs)
* {
*   (void)lhs;
*   some_counter += 1;
*   return;
* };
* pk_bkt_arr_iterate(&bkt_arr, &IterCbWrapper::invoke, &cb_wrapper);
* assert(some_count == 1);
* ```
*
********************************************************************************
* pkmem-types.h: def PK_IMPL_MEM_TYPES before including pk.h to enable ad-hoc.
*
* Provides the types needed by pkmem, as well as a generic pk_handle featuring a
*  bucket+item indexing system.
*
********************************************************************************
* pkmem.h: def PK_IMPL_MEM before including pk.h to enable ad-hoc.
*
* A bucketed memory manager. Allows for the creation of ad-hoc buckets.
*
* Note: Each created pk_membucket MUST call pk_bucket_destroy(bkt). Memory
*  buckets are client managed.
*
* Thread safety: "pk_new" and "pk_delete" methods *are* thread-safe, but
*  thread-safety is implemented per-bucket via a single mutex with long-running
*  lock times. PRs for a more performant thread-safe strategy are welcome,
*  complexity and benchmark depending.
*
* The following definitions (shown with defaults) can be overridden:
* PK_MEM_DEFAULT_BUCKET_SIZE 256MB (client-convenience only)
* PK_MINIMUM_ALIGNMENT       1
*
* For debugging purposes, define the following:
* PK_MEMORY_DEBUGGER : enables a tracking system for all allocs and frees to
*  ensure bucket validity and consistency.
* PK_MEMORY_FORCE_MALLOC : completely disables pkmem and its debugging features
*  in favor of directly using malloc and free. Useful for out-of-bounds
*  checking.
*
********************************************************************************
* pkstr.h: def PK_IMPL_STR before including pk.h to enable ad-hoc.
*
* Provides a simple string structure, allowing the user to track the string
*  length and reserved buffer length. Limits max string length to uint32_t max
*  size, which is roughly 4GB.
*
* Tip: set reserved to 0 for compile-time strings as well as for strings alloc'd
*  in a larger buffer (such as bulk-loaded data).
*
********************************************************************************
* pkev.h: def PK_IMPL_EV before including pk.h to enable ad-hoc.
*
* Provides a simple event callback system. While the _init and _teardown
*  functions are NOT thread-safe, the _register and _emit functions are.
*  Note: uses malloc.
*
* Each mgr is stored contiguously with its data. Consider the following layout:
* [[mgr][ev 0][ev 1][..][ev N][ev 1 cb array][ev 2 cb array][..][ev N cb array]]
*
* The following definitions (shown with defaults) can be overridden:
* PK_EV_INIT_MGR_COUNT       1
* PK_EV_INIT_EV_COUNT        16
* PK_EV_INIT_CB_COUNT        8
* PK_EV_GROW_RATIO           1.5
*
* The number of evs and cbs (per ev) is stored as a uint8_t, so a hard-limit of
*  255 is to be observed for each. The number of mgrs is stored as a uint64_t.
*
* Note that PK_EV_GROW_RATIO is used in two scenarios:
*  1. When registering an ev on a full mgr.
*  2. When registering a cb on a full ev.
* The grow ratio is applied to the ev count and cb count in their respective
*  scenarios. This causes a new allocation for the entire mgr. The existing
*  mgr and its evs and cbs are copied to the new larger buffer space.
*  Explicitly, the number of mgrs does not grow dynamically. Use
*  PK_EV_INIT_MGR_COUNT to control the number of mgrs.
*
* Note that increasing PK_EV_INIT_MGR_COUNT isn't recommended, but you may
*  consider doing so if you have specific size or contiguity requirements. For
*  example, you could -DPK_EV_INIT_EV_COUNT=1 to reduce the memory footprint of
*  each event/mgr, and simply create a new mgr for each needed event. Be aware
*  that in this provided scenario a given mgr will still grow if a second EV is
*  registered.
*
********************************************************************************
* pkarr.h: def PK_IMPL_ARR before including pk.h to enable ad-hoc
*
* Provides a structure for managing contiguous lists
*
* The following definitions (shown with defaults) can be overridden:
* PK_ARR_INITIAL_COUNT        16
* PK_ARR_GROW_RATIO           1.5
* PK_ARR_MOVE_IN_PLACE       (not defined)
*
* The macro `PK_ARR_MOVE_IN_PLACE` ensures that when possible, the pointer value
*  of `arr->data` is preserved.
* It is used in the following methods:
*  `pk_arr_move_to_back`
*  `pk_arr_remove_at`
* This has two additinal benefits:
*  1. Minimizing the number and `sz` of calls to `pk_new`
*  2. Ensuring `data[0]` to `data[(N - 1) * stride]` is not copied extraneously
*   to a new buffer.
* The speed of this will vary depending on usage, platform, and compiler.
*
* Initialize `stride`, `alignment`, and `bkt` (optional) members
*  *before* calling any `pk_arr_*` methods.
* Alternatively, if using c++, use the template ctor.
*
* Examples:
* ``` c
* struct pk_arr arr = {0};
* arr.stride = sizeof(obj);     // required
* arr.alignment = alignof(obj); // required
* arr.bkt = bkt;                // optional
* pk_arr_reserve(&arr, 10);     // optional
* pk_arr_append(&arr, &obj);
* ```
* ``` c++
* struct pk_arr<some_type> arr(bkt);
* pk_arr_reserve(&arr, 10);     // optional
* pk_arr_append(&arr, &obj);
* ```
* ``` c
* struct pk_arr arr = {0};
* arr.stride = sizeof(obj);     // required
* arr.alignment = alignof(obj); // required
* arr.bkt = bkt;                // optional
* pk_arr_resize(&arr, 10);
* obj* d = (obj*)arr->data;
* d[0] = ...;
* ```
* ``` c++
* struct pk_arr_t<some_type> arr();
* pk_arr_resize(&arr, 10);
* arr[0] = {};
* ```
*
********************************************************************************
* pkstn.h: def PK_IMPL_STN before including pk.h to enable ad-hoc.
*
* Provides a thorough interface for interacting with the `stoi` family of
*  procedures.
*
********************************************************************************
* pktmr.h: No IMPL define, all methods are macros.
*
* Offers a set of `pk_tmr*` macros for elapsed time checking.
*
* The following definitions (shown with defaults) can be overridden:
* PK_TMR_CLOCK               CLOCK_MONOTONIC
*
* If your needs require you to use more than one clock, I recommend calling
*  `clock_gettime` manually instead of calling `pk_tmr_start`/`pk_tmr_stop`.
* `pk_tmr.b` is the start time.
* `pk_tmr.e` end the end time.
* You could then call the `pk_tmr_duration...` convenience macros as needed.
*
********************************************************************************
* pkuuid.h: define PK_IMPL_UUID before including pk.h to enable ad-hoc.
*
* Provides a 16-byte unsigned char array struct for uuids.
*
* The following definitions (shown with defaults) can be overridden:
* PK_UUID_CLOCK              CLOCK_TAI      (preferred, if available)
* PK_UUID_CLOCK              CLOCK_REALTIME (fallback)
*
* The `PK_UUID_CLOCK` macro has minimal built-in fallback logic.
* The uuidv7 specification states that the timestamp portion of the uuid must be
*  a unix epoch, leap seconds EXCLUDED. Only `CLOCK_TAI` meets this requirement
*  on Linux.
*
* Note that this currectly calls `srand()` once at startup, and calls `rand()`
*  2 times for each uuidv7 to fill 74 bits with random data (with an XOR for the
*  remaining 10 bits).
*
********************************************************************************
* pkbktarr.h: define PK_IMPL_BKTARR before including pk.h to enable ad-hoc.
*
* Provides a struct for bucketed data allocation.
*
* Maximum (default) bucket limits are as follows:
* buckets:        0xFFFFFF    (16777215)
* items/bucket:   0x40        (64)
*
* Note that you may specify separate `pk_membucket`s for the the struct's
*  arrays `bucketed_data` + `idx_unused`, and the actual bucketed array data
*  found within `bucketed_data`.
* If the `pk_membucket` for "data" is exclusive to this struct, each bucket (and
*  by extension, the data) will be contiguious in memory.
*
* Examples:
* ```c
* struct pk_bkt_arr_handle custom_limits;
* custom_limits.b = 8;
* custom_limits.i = 8;
* struct pk_bkt_arr arr;
* pk_bkt_arr_init(
*   &arr, sizeof(int), alignof(int), custom_limits, bkt_buckets, bkt_data);
* struct pk_bkt_arr_handle h = pk_bkt_arr_new_handle(&arr);
* int **int_ptrs = (int**)arr.bucketed_data;
* int_ptrs[h.b][h.i] = 128;
* pk_bkt_arr_free_handle(&arr, h);
* pk_bkt_arr_teardown(&arr);
* ```
* ```c++
* // default limits, no pk_membucket
* struct pk_bkt_arr<int> arr();
* struct pk_bkt_arr_handle h = pk_bkt_arr_new_handle(&arr);
* arr[h] = 128;
* pk_bkt_arr_free_handle(&arr, h);
* pk_bkt_arr_teardown(&arr);
* ```
*
********************************************************************************
* pkbktarr.h: define PK_IMPL_FUNCINSTR before including pk.h to enable ad-hoc.
*
* Provides function instrumentation.
*
* Note: Currently only supports gcc/g++.
* Note: Currently only prints results.
*
* Examples:
* ```c
* main() {
*   pk_funcinstr_init();
*   ...
*   pk_funcinstr_teardown();
* }
* ```
*
********************************************************************************
* pktst.h: define PK_IMPL_TST before including pk.h to enable ad-hoc.
*
* Provides a simple testing framework
*
* Examples:
* ```c
* main() {
*   pk_test_run_test_groups(&my_get_test_group_func, 1);
* }
* ```
*
*******************************************************************************/

#define PK_VERSION "0.9.8"

#ifdef PK_IMPL_ALL
# ifndef PK_IMPL_MEM_TYPES
#  define PK_IMPL_MEM_TYPES
# endif
# ifndef PK_IMPL_MEM
#  define PK_IMPL_MEM
# endif
# ifndef PK_IMPL_STR
#  define PK_IMPL_STR
# endif
# ifndef PK_IMPL_EV
#  define PK_IMPL_EV
# endif
# ifndef PK_IMPL_ARR
#  define PK_IMPL_ARR
# endif
# ifndef PK_IMPL_STN
#  define PK_IMPL_STN
# endif
# ifndef PK_IMPL_UUID
#  define PK_IMPL_UUID
# endif
# ifndef PK_IMPL_BKTARR
#  define PK_IMPL_BKTARR
# endif
# ifndef PK_IMPL_FUNCINSTR
#  define PK_IMPL_FUNCINSTR
# endif
# ifndef PK_IMPL_TST
#  define PK_IMPL_TST
# endif
#endif
#ifndef PK_MACROS_H
#define PK_MACROS_H

#ifndef PK_LOG_OVERRIDE
#  ifdef NDEBUG
#   define PK_LOG_ERR(str) (void)str
#   define PK_LOG_INF(str) (void)str
#   define PK_LOGV_ERR(str, ...) (void)str
#   define PK_LOGV_INF(str, ...) (void)str
#  else
#   define PK_LOG_ERR(str) fprintf(stderr, str)
#   define PK_LOG_INF(str) fprintf(stdout, str)
#   define PK_LOGV_ERR(str, ...) fprintf(stderr, str, __VA_ARGS__)
#   define PK_LOGV_INF(str, ...) fprintf(stdout, str, __VA_ARGS__)
#  endif
#endif

#define PK_CLR_RESET             "\033[0m"
#define PK_CLR_FG_BLACK          "\033[30m"
#define PK_CLR_FG_RED            "\033[31m"
#define PK_CLR_FG_GREEN          "\033[32m"
#define PK_CLR_FG_YELLOW         "\033[33m"
#define PK_CLR_FG_BLUE           "\033[34m"
#define PK_CLR_FG_MAGENTA        "\033[35m"
#define PK_CLR_FG_CYAN           "\033[36m"
#define PK_CLR_FG_WHITE          "\033[37m"
#define PK_CLR_BG_BLACK          "\033[40m"
#define PK_CLR_BG_RED            "\033[41m"
#define PK_CLR_BG_GREEN          "\033[42m"
#define PK_CLR_BG_YELLOW         "\033[43m"
#define PK_CLR_BG_BLUE           "\033[44m"
#define PK_CLR_BG_MAGENTA        "\033[45m"
#define PK_CLR_BG_CYAN           "\033[46m"
#define PK_CLR_BG_WHITE          "\033[47m"
#define PK_CLR_FG_BRIGHT_BLACK   "\033[90m"
#define PK_CLR_FG_BRIGHT_RED     "\033[91m"
#define PK_CLR_FG_BRIGHT_GREEN   "\033[92m"
#define PK_CLR_FG_BRIGHT_YELLOW  "\033[93m"
#define PK_CLR_FG_BRIGHT_BLUE    "\033[94m"
#define PK_CLR_FG_BRIGHT_MAGENTA "\033[95m"
#define PK_CLR_FG_BRIGHT_CYAN    "\033[96m"
#define PK_CLR_FG_BRIGHT_WHITE   "\033[97m"
#define PK_CLR_BG_BRIGHT_BLACK   "\033[100m"
#define PK_CLR_BG_BRIGHT_RED     "\033[101m"
#define PK_CLR_BG_BRIGHT_GREEN   "\033[102m"
#define PK_CLR_BG_BRIGHT_YELLOW  "\033[103m"
#define PK_CLR_BG_BRIGHT_BLUE    "\033[104m"
#define PK_CLR_BG_BRIGHT_MAGENTA "\033[105m"
#define PK_CLR_BG_BRIGHT_CYAN    "\033[106m"
#define PK_CLR_BG_BRIGHT_WHITE   "\033[107m"

#define PK_Q(x) #x
#define PK_QUOTE(x) PK_Q(x)
#define PK_CONCAT2(x, y) x##y
#define PK_CONCAT(x, y) PK_CONCAT2(x, y)

#define PK_HAS_FLAG(val, flag) ((val & flag) == flag)
#define PK_CLAMP(val, min, max) (val < min ? min : val > max ? max : val)
#define PK_MIN(val, min) (val < min ? val : min)
#define PK_MAX(val, max) (val > max ? val : max)

#define PK_TO_BIN_PAT PK_Q(%c%c%c%c%c%c%c%c)
#define PK_TO_BIN_PAT_8  PK_TO_BIN_PAT
#define PK_TO_BIN_PAT_16 PK_TO_BIN_PAT PK_TO_BIN_PAT
#define PK_TO_BIN_PAT_32 PK_TO_BIN_PAT_16 PK_TO_BIN_PAT_16
#define PK_TO_BIN_PAT_64 PK_TO_BIN_PAT_32 PK_TO_BIN_PAT_32
#define PK_TO_BIN(byte)        \
  ((byte) & 0x80 ? '1' : '0'), \
  ((byte) & 0x40 ? '1' : '0'), \
  ((byte) & 0x20 ? '1' : '0'), \
  ((byte) & 0x10 ? '1' : '0'), \
  ((byte) & 0x08 ? '1' : '0'), \
  ((byte) & 0x04 ? '1' : '0'), \
  ((byte) & 0x02 ? '1' : '0'), \
  ((byte) & 0x01 ? '1' : '0')
#define PK_TO_BIN_8(u8)   PK_TO_BIN(u8)
#define PK_TO_BIN_16(u16) PK_TO_BIN((u16 >> 8)), PK_TO_BIN((u16 & 0x00FF))
#define PK_TO_BIN_32(u32) PK_TO_BIN_16((u32 >> 16)), PK_TO_BIN_16((u32 & 0x0000FFFF))
#define PK_TO_BIN_64(u64) PK_TO_BIN_32((u64 >> 32)), PK_TO_BIN_32((u64 & 0x00000000FFFFFFFF))

#if defined(__cplusplus)
#  define CAFE_BABE(T) reinterpret_cast<T *>(0xCAFEBABE)
#else
#  define CAFE_BABE(T) (T *)(0xCAFEBABE)
#endif

#define NULL_CHAR_ARR(v, len) char v[len]; v[0] = '\0'; v[len-1] = '\0';

#define IS_CONSTRUCTIBLE(T) constexpr(std::is_default_constructible<T>::value && !std::is_integral<T>::value && !std::is_floating_point<T>::value)
#define IS_DESTRUCTIBLE(T) constexpr(std::is_destructible<T>::value && !std::is_integral<T>::value && !std::is_floating_point<T>::value && !std::is_array<T>::value)

#define TypeSafeInt2_H(TypeName, Type, Max, TypeName_T, TypeName_MAX, TypeName_T_MAX)              \
  using TypeName_T = Type;                                                                         \
  enum class TypeName : TypeName_T;                                                                \
  constexpr TypeName_T TypeName_T_MAX = TypeName_T{Max};                                           \
  constexpr TypeName TypeName_MAX = TypeName{TypeName_T_MAX};                                      \
  TypeName operator+(const TypeName& a, const TypeName& b);                                        \
  TypeName operator-(const TypeName& a, const TypeName& b);                                        \
  TypeName operator*(const TypeName& a, const TypeName& b);                                        \
  TypeName operator/(const TypeName& a, const TypeName& b);                                        \
  TypeName operator&(const TypeName& a, const TypeName& b);                                        \
  TypeName operator|(const TypeName& a, const TypeName& b);                                        \
  TypeName operator^(const TypeName& a, const TypeName& b);                                        \
  TypeName& operator++(TypeName& a);                                                               \
  TypeName& operator--(TypeName& a);                                                               \
  TypeName operator++(TypeName& a, int);                                                           \
  TypeName operator--(TypeName& a, int);                                                           \
  TypeName operator<<(const TypeName& a, const TypeName& b);                                       \
  TypeName operator>>(const TypeName& a, const TypeName& b);                                       \
  TypeName operator+=(TypeName& a, const TypeName& b);                                             \
  TypeName operator-=(TypeName& a, const TypeName& b);                                             \
  TypeName operator*=(TypeName& a, const TypeName& b);                                             \
  TypeName operator/=(TypeName& a, const TypeName& b);                                             \
  TypeName operator&=(TypeName& a, const TypeName& b);                                             \
  TypeName operator|=(TypeName& a, const TypeName& b);                                             \
  TypeName operator^=(TypeName& a, const TypeName& b);                                             \
  TypeName operator~(TypeName& a);
#define TypeSafeInt2_B(TypeName, TypeName_T)                                                       \
  TypeName operator+(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) + static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName operator-(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) - static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName operator*(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) * static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName operator/(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) / static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName operator&(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) & static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName operator|(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) | static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName operator^(const TypeName& a, const TypeName& b) {                                       \
    return TypeName(static_cast<TypeName_T>(a) ^ static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  TypeName& operator++(TypeName& a) {                                                              \
    a = a + TypeName{1};                                                                           \
    return a;                                                                                      \
  }                                                                                                \
  TypeName& operator--(TypeName& a) {                                                              \
    a = a - TypeName{1};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator++(TypeName& a, int) {                                                          \
    a = a + TypeName{1};                                                                           \
    return a;                                                                                      \
  }                                                                                                \
  TypeName operator--(TypeName& a, int) {                                                          \
    a = a - TypeName{1};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator<<(const TypeName& a, const TypeName& b) {                                      \
    return TypeName(static_cast<TypeName_T>(a) << static_cast<TypeName_T>(b));                     \
  };                                                                                               \
  TypeName operator>>(const TypeName& a, const TypeName& b) {                                      \
    return TypeName(static_cast<TypeName_T>(a) >> static_cast<TypeName_T>(b));                     \
  };                                                                                               \
  TypeName operator+=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a + b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator-=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a - b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator*=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a * b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator/=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a / b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator&=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a & b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator|=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a | b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator^=(TypeName& a, const TypeName& b) {                                            \
    a = TypeName{a ^ b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  TypeName operator~(TypeName& a) {                                                                \
    TypeName_T b{static_cast<TypeName_T>(a)};                                                      \
    return TypeName{static_cast<TypeName_T>(~b)};                                                  \
  };
#define TypeSafeInt_H(TypeName, Type, Max)                                                         \
  TypeSafeInt2_H(TypeName, Type, Max, PK_CONCAT(TypeName, _T), PK_CONCAT(TypeName, _MAX), PK_CONCAT(TypeName, _T_MAX))
#define TypeSafeInt_B(TypeName)                                                                    \
  TypeSafeInt2_B(TypeName, PK_CONCAT(TypeName, _T))

#define TypeSafeInt2_H_constexpr(TypeName, Type, Max, TypeName_T, TypeName_MAX, TypeName_T_MAX)    \
  using TypeName_T = Type;                                                                         \
  enum class TypeName : TypeName_T;                                                                \
  constexpr TypeName_T TypeName_T_MAX = TypeName_T{Max};                                           \
  constexpr TypeName TypeName_MAX = TypeName{TypeName_T_MAX};                                      \
  constexpr TypeName operator+(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) + static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName operator-(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) - static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName operator*(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) * static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName operator/(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) / static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName operator&(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) & static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName operator|(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) | static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName operator^(const TypeName& a, const TypeName& b) {                             \
    return TypeName(static_cast<TypeName_T>(a) ^ static_cast<TypeName_T>(b));                      \
  }                                                                                                \
  constexpr TypeName& operator++(TypeName& a) {                                                    \
    a = a + TypeName{1};                                                                           \
    return a;                                                                                      \
  }                                                                                                \
  constexpr TypeName& operator--(TypeName& a) {                                                    \
    a = a - TypeName{1};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator++(TypeName& a, int) {                                                \
    a = a + TypeName{1};                                                                           \
    return a;                                                                                      \
  }                                                                                                \
  constexpr TypeName operator--(TypeName& a, int) {                                                \
    a = a - TypeName{1};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator<<(const TypeName& a, const TypeName& b) {                            \
    return TypeName(static_cast<TypeName_T>(a) << static_cast<TypeName_T>(b));                     \
  };                                                                                               \
  constexpr TypeName operator>>(const TypeName& a, const TypeName& b) {                            \
    return TypeName(static_cast<TypeName_T>(a) >> static_cast<TypeName_T>(b));                     \
  };                                                                                               \
  constexpr TypeName operator+=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a + b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator-=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a - b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator*=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a * b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator/=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a / b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator&=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a & b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator|=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a | b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator^=(TypeName& a, const TypeName& b) {                                  \
    a = TypeName{a ^ b};                                                                           \
    return a;                                                                                      \
  };                                                                                               \
  constexpr TypeName operator~(const TypeName& a) {                                                \
    TypeName_T b{static_cast<TypeName_T>(a)};                                                      \
    return TypeName{static_cast<TypeName_T>(~b)};                                                  \
  };
#define TypeSafeInt_constexpr(TypeName, Type, Max)                                                 \
  TypeSafeInt2_H_constexpr(TypeName, Type, Max, PK_CONCAT(TypeName, _T), PK_CONCAT(TypeName, _MAX), PK_CONCAT(TypeName, _T_MAX))

#endif /* PK_MACROS_H */
#ifndef PK_PKTMPLN_H
#define PK_PKTMPLN_H

#if defined (__cplusplus)
#include <functional>
template<typename Ret, typename A1, typename B1>
struct pk_tmpln_1 {
	using FuncType = std::function<Ret(A1)>;
	FuncType func;
	static Ret invoke(void *ptr, B1 b1) {
		auto *self = static_cast<pk_tmpln_1*>(ptr);
		return self->func(reinterpret_cast<A1>(b1));
	}
};
template<typename Ret, typename A1, typename A2, typename B1, typename B2>
struct pk_tmpln_2 {
	using FuncType = std::function<Ret(A1, A2)>;
	FuncType func;
	static Ret invoke(void *ptr, B1 b1, B2 b2) {
		auto *self = static_cast<pk_tmpln_2*>(ptr);
		return self->func(reinterpret_cast<A1>(b1), reinterpret_cast<A2>(b2));
	}
};
template<typename Ret, typename A1, typename A2, typename A3, typename B1, typename B2, typename B3>
struct pk_tmpln_3 {
	using FuncType = std::function<Ret(A1, A2, A3)>;
	FuncType func;
	static Ret invoke(void *ptr, B1 b1, B2 b2, B3 b3) {
		auto *self = static_cast<pk_tmpln_3*>(ptr);
		return self->func(reinterpret_cast<A1>(b1), reinterpret_cast<A2>(b2), reinterpret_cast<A3>(b3));
	}
};
#endif

#endif /* PK_PKTMPLN_H */
#ifndef PK_MEM_TYPES_H
#define PK_MEM_TYPES_H

#include <stdint.h>

typedef uint32_t pk_handle_bucket_index_T;
typedef uint32_t pk_handle_item_index_T;

enum PK_HANDLE_VALIDATION : uint8_t {
	PK_HANDLE_VALIDATION_VALID                      = 0,
	PK_HANDLE_VALIDATION_BUCKET_INDEX_TOO_HIGH      = 1,
	PK_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH        = 2,
	PK_HANDLE_VALIDATION_VALUE_MAX                  = 3,
};

struct pk_handle {
	pk_handle_bucket_index_T bucketIndex;
	pk_handle_item_index_T itemIndex;
};

#if ! defined(__cplusplus)
	#define PK_HANDLE_MAX ((struct pk_handle){ .bucketIndex = 0xFFFFFFFF, .itemIndex = 0xFFFFFFFF })
#else
	#define PK_HANDLE_MAX (pk_handle{ 0xFFFFFFFF, 0xFFFFFFFF })
#endif

enum PK_HANDLE_VALIDATION pk_handle_validate(const struct pk_handle handle, const struct pk_handle bucketHandle, const uint64_t maxItems);

#if defined(__cplusplus)

constexpr struct pk_handle pk_handle_MAX_constexpr = { 0xFFFFFFFF, 0xFFFFFFFF };

inline constexpr bool
operator==(const pk_handle& lhs, const pk_handle& rhs)
{
	return lhs.bucketIndex == rhs.bucketIndex && lhs.itemIndex == rhs.itemIndex;
}

template<const pk_handle handle, const pk_handle bucketHandle, const uint64_t maxItems>
inline constexpr enum PK_HANDLE_VALIDATION
pk_handle_validate_constexpr()
{
	if constexpr (handle == pk_handle_MAX_constexpr)
		return PK_HANDLE_VALIDATION_VALUE_MAX;
	if constexpr (handle.bucketIndex > bucketHandle.bucketIndex)
		return PK_HANDLE_VALIDATION_BUCKET_INDEX_TOO_HIGH;
	if constexpr (handle.itemIndex > maxItems)
		return PK_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH;
	if constexpr (handle.bucketIndex == bucketHandle.bucketIndex && handle.itemIndex > bucketHandle.itemIndex)
		return PK_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH;
	return PK_HANDLE_VALIDATION_VALID;
}
#endif /* __cplusplus */

struct pk_membucket;

enum PK_MEMBUCKET_FLAGS : uint64_t {
	PK_MEMBUCKET_FLAG_NONE                = (0),
	PK_MEMBUCKET_FLAG_TRANSIENT           = (1 << 01l),
	PK_MEMBUCKET_FLAG_ALL                 = (0xFFFFFFFFFFFFFFFF),
};

#endif /* PK_MEM_TYPES_H */

#ifdef PK_IMPL_MEM_TYPES

enum PK_HANDLE_VALIDATION
pk_handle_validate(const struct pk_handle handle, const struct pk_handle bucketHandle, const uint64_t maxItems)
{
	if (handle.bucketIndex == PK_HANDLE_MAX.bucketIndex && handle.itemIndex == PK_HANDLE_MAX.itemIndex)
		return PK_HANDLE_VALIDATION_VALUE_MAX;
	if (handle.bucketIndex > bucketHandle.bucketIndex)
		return PK_HANDLE_VALIDATION_BUCKET_INDEX_TOO_HIGH;
	if (handle.itemIndex > maxItems)
		return PK_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH;
	if (handle.bucketIndex == bucketHandle.bucketIndex && handle.itemIndex > bucketHandle.itemIndex)
		return PK_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH;
	return PK_HANDLE_VALIDATION_VALID;
}

#endif /* PK_IMPL_MEM_TYPES */
#ifndef PK_MEM_H
#define PK_MEM_H

#include <stdint.h>
#include <stdlib.h>

#ifndef PK_MEM_DEFAULT_BUCKET_SIZE
#  define PK_MEM_DEFAULT_BUCKET_SIZE (1ULL * 1024ULL * 1024ULL * 256ULL)
#endif

size_t pk_mem_bucket_calculate_size(size_t sz, size_t reserved_block_count);
struct pk_membucket* pk_mem_bucket_create(const char* description, int64_t sz, enum PK_MEMBUCKET_FLAGS flags);
void pk_mem_bucket_debug_print(struct pk_membucket *bkt);
void pk_mem_bucket_destroy(struct pk_membucket* bkt);
void pk_mem_bucket_reset(struct pk_membucket* bkt);
void pk_mem_bucket_set_client_mem_bucket(struct pk_membucket *bkt);
bool pk_mem_bucket_ptr_is_in_mem_bucket(const void* ptr, const struct pk_membucket* bkt);

void* pk_new_base(size_t sz, size_t alignment);
void* pk_new_bkt(size_t sz, size_t alignment, struct pk_membucket* bkt);
void* pk_new(size_t sz, size_t alignment, struct pk_membucket* bkt);
void pk_delete_base(const void* ptr, size_t sz);
void pk_delete_bkt(const void* ptr, size_t sz, struct pk_membucket* bkt);
void pk_delete(const void* ptr, size_t sz, struct pk_membucket* bkt);

#if defined(__cplusplus)

#include <type_traits>
#include <new>

static inline void stupid_header_warnings_cpp() { (void)std::is_const<void>::value; }

template <typename T>
inline T*
pk_new(pk_membucket* bucket = NULL)
{
	void* ptr = NULL;
	if (bucket) {
		ptr = pk_new_bkt(sizeof(T), alignof(T), bucket);
	} else {
		ptr = pk_new_base(sizeof(T), alignof(T));
	}
	if IS_CONSTRUCTIBLE(T) {
		return new (ptr) T{};
	}
	return reinterpret_cast<T*>(ptr);
}

template <typename T>
inline T*
pk_new_arr(long count, pk_membucket* bucket = NULL)
{
	char* ptr = NULL;
	if (bucket) {
		ptr = static_cast<char*>(pk_new_bkt(sizeof(T) * count, alignof(T), bucket));
	} else {
		ptr = static_cast<char*>(pk_new_base(sizeof(T) * count, alignof(T)));
	}
	if (ptr == NULL) return NULL;
	if IS_CONSTRUCTIBLE(T) {
		for (long i = 0; i < count; ++i) {
			new (ptr + (i * sizeof(T))) T{};
		}
	}
	return reinterpret_cast<T*>(ptr);
}

template <typename T>
inline void
pk_delete(const T* ptr, pk_membucket* bucket = NULL)
{
	if IS_DESTRUCTIBLE(T) {
		reinterpret_cast<const T*>(ptr)->~T();
	}
	if (bucket) {
		return pk_delete_bkt(static_cast<const void*>(ptr), sizeof(T), bucket);
	} else {
		return pk_delete_base(static_cast<const void*>(ptr), sizeof(T));
	}
}

template <typename T>
inline void
pk_delete_arr(const T* ptr, long count, pk_membucket* bucket = NULL)
{
	if IS_DESTRUCTIBLE(T) {
		for (long i = 0; i < count; ++i) {
			reinterpret_cast<const T*>(reinterpret_cast<const char*>(ptr) + (i * sizeof(T)))->~T();
		}
	}
	if (bucket) {
		return pk_delete_bkt(static_cast<const void*>(ptr), sizeof(T) * count, bucket);
	} else {
		return pk_delete_base(static_cast<const void*>(ptr), sizeof(T) * count);
	}
}

#endif /* __cplusplus */

#endif /* PK_MEM */

#ifdef PK_IMPL_MEM

#include <string.h>
#include <stdio.h>
#include <threads.h>
#include <assert.h>

static inline void pkmem_stupid_header_warnings() { (void)stdout; }

#if defined(PK_MEMORY_DEBUGGER)
#endif

#ifndef PK_MINIMUM_ALIGNMENT
#  define PK_MINIMUM_ALIGNMENT 1
#endif
#ifndef PK_MEMORY_DEBUGGER_MAX_BUCKET_COUNT
 #define PK_MEMORY_DEBUGGER_MAX_BUCKET_COUNT 16
#endif

#define EXPECTED_PK_MEMBLOCK_SIZE 128

#define pk_memblock_blocks_idx(bkt, idx) ((bkt->block_capacity-1)-(idx))
#define pk_bkt_data(bkt) ((char*)bkt + EXPECTED_PK_MEMBLOCK_SIZE)
#define pk_bkt_head(bkt) ((&bkt->data[0]) + bkt->head)
#define pk_bkt_data_sz(bkt) (size_t)((char*)&bkt->blocks[0] - &bkt->data[0])

struct pk_memblock {
	union {
		char* data;
		void* ptr;
	};
	size_t size;
};

struct pk_membucket {
	// 00
	mtx_t mtx;
	// 40
	// the total size of the bucket, struct+data
	size_t size;
	// 48
	// the current head of the bucket: byte offset from `data`.
	// All currently alloc'd data is before this offset
	size_t head;
	// 56
	uint32_t block_capacity;
	// 60
	uint32_t block_head_l;
	// 64
	// this should ALWAYS point to the last block containing unalloced space in bkt
	uint32_t block_head_r;
	// 68
	// the number of active allocations from this bucket
	// -should correlate to blocks that have a sz > 0
	uint32_t alloc_count;
	// 72
	struct pk_memblock *blocks;
	// 80
	enum PK_MEMBUCKET_FLAGS flags;
	// 88
	const char *description;
	// 96
#ifdef PK_MEMORY_DEBUGGER
	struct pk_memblock *debug_blocks;
	// 104
	uint32_t debug_head_l;
	// 108
	uint32_t debug_head_r;
	// 112
	uint32_t debug_block_capacity;
	// 116
	char padding[(8*1)+4];
#else
	char padding[(8*4)];
#endif
	// 128
	// starting point for alloc'd data
	// data[] is illegal in c++ (though it works in gcc/clang, but so does this)
	char data[1];
};

static struct pk_membucket *client_bucket = NULL;

size_t
pk_mem_bucket_calculate_size(size_t sz, size_t reserved_block_count)
{
	size_t base_size = EXPECTED_PK_MEMBLOCK_SIZE + sz + (sizeof(struct pk_memblock) * reserved_block_count);
	// This trick ensures that our array of pk_memblocks at the end is mem-aligned.
	// We do, however, still have to do the math when setting the ptr.
	// Why? the user may have strict memory requirements and didn't call this function.
	return base_size + (64 - (base_size % 64));
}

bool
pk_mem_bucket_ptr_is_in_mem_bucket(const void* ptr, const struct pk_membucket* bkt)
{
	return (ptr >= (void*)bkt && ptr < (void*)pk_bkt_head(bkt));
}

void
pk_mem_bucket_debug_print(struct pk_membucket *bkt)
{
	PK_LOG_INF("pk_membucket details:\n");
	PK_LOGV_INF("\tbkt:                 %p\n",  (void *)bkt);
	PK_LOGV_INF("\tdescription:         %s\n",  bkt->description);
	PK_LOGV_INF("\tsize:                %lu\n", bkt->size);
	PK_LOGV_INF("\thead:                %lu\n", bkt->head);
	PK_LOGV_INF("\tallocs:              %u\n",  bkt->alloc_count);
	PK_LOGV_INF("\tblock head_l:        %u\n",  bkt->block_head_l);
	PK_LOGV_INF("\tblock head_r:        %u\n",  bkt->block_head_r);
	PK_LOGV_INF("\tflags:               %lu\n", bkt->flags);
#ifdef PK_MEMORY_DEBUGGER
	PK_LOGV_INF("\tdebug alloc head_l:  %u\n",  bkt->debug_head_l);
	PK_LOGV_INF("\tdebug alloc head_r:  %u\n",  bkt->debug_head_r);
	PK_LOGV_INF("\tdebug cappacity:     %u\n",  bkt->debug_block_capacity);
#endif
}

struct pk_membucket*
pk_mem_bucket_create(const char* description, int64_t sz, enum PK_MEMBUCKET_FLAGS flags)
{
	// 512 example:
	// [000-127] pk_membucket
	// [128-191] 64 bytes of data LOL
	// [192-511] 20 pk_memblocks (20 is worst-case, start 16, 4 per 64 bytes)
	if ((sz % 64) > 0) {
		sz += 64 - (sz % 64);
	}
	assert(sz >= 512 && "[pkmem.h] bucket too small to track allocation data");
	struct pk_membucket* bkt = (struct pk_membucket*)aligned_alloc(64, sz);
	if (bkt == NULL) return NULL;
	mtx_init(&bkt->mtx, mtx_plain);
	bkt->size = sz;
	bkt->head = 0;
	bkt->block_capacity = 16;
	bkt->block_head_l = 0;
	bkt->block_head_r = 0;
	bkt->alloc_count = 0;
	bkt->flags = flags;
	bkt->description = description;
	char* blocks_addr = (char*)bkt + sz - (sizeof(struct pk_memblock) * bkt->block_capacity);
	blocks_addr -= (size_t)blocks_addr % 64;
	bkt->blocks = (struct pk_memblock*)blocks_addr;
	bkt->block_capacity = (size_t)(((char*)bkt + sz) - blocks_addr) / sizeof(struct pk_memblock);

	bkt->blocks[pk_memblock_blocks_idx(bkt,0)].size = pk_bkt_data_sz(bkt);
	bkt->blocks[pk_memblock_blocks_idx(bkt,0)].ptr = pk_bkt_data(bkt);

#ifdef PK_MEMORY_DEBUGGER
	bkt->debug_head_l = 0;
	bkt->debug_head_r = 0;
	bkt->debug_block_capacity = 128;
	bkt->debug_blocks = (struct pk_memblock*)aligned_alloc(alignof(struct pk_memblock), sizeof(struct pk_memblock) * 128);
	bkt->debug_blocks[0].ptr = NULL;
	bkt->debug_blocks[0].size = 0;
#endif

	return bkt;
}

void
pk_mem_bucket_destroy(struct pk_membucket* bkt)
{
	assert(bkt != NULL);
#ifdef PK_MEMORY_DEBUGGER
	if (bkt->debug_blocks != NULL) free(bkt->debug_blocks);
#endif
	free(bkt);
}

void
pk_mem_bucket_reset(struct pk_membucket* bkt)
{
	if (PK_HAS_FLAG(bkt->flags, PK_MEMBUCKET_FLAG_TRANSIENT) == false) {
		PK_LOG_ERR("WARNING: pk_bucket_reset called on non-transient pk_membucket\n");
	}
	bkt->head = 0;
	bkt->block_capacity = 16;
	char* blocks_addr = (char*)bkt + bkt->size - (sizeof(struct pk_memblock) * bkt->block_capacity);
	blocks_addr -= (size_t)blocks_addr % 64;
	bkt->blocks = (struct pk_memblock*)blocks_addr;
	bkt->block_capacity = (size_t)(((char*)bkt + bkt->size) - blocks_addr) / sizeof(struct pk_memblock);
	bkt->block_head_l = 0;
	bkt->block_head_r = 0;
	bkt->alloc_count = 0;

	bkt->blocks[pk_memblock_blocks_idx(bkt,0)].size = pk_bkt_data_sz(bkt);
	bkt->blocks[pk_memblock_blocks_idx(bkt,0)].ptr = pk_bkt_data(bkt);

#ifdef PK_MEMORY_DEBUGGER
	bkt->debug_head_l = 0;
	bkt->debug_head_r = 0;
	bkt->debug_blocks[0].ptr = NULL;
	bkt->debug_blocks[0].size = 0;
#endif
}

void pk_mem_bucket_set_client_mem_bucket(struct pk_membucket *bkt) {
	client_bucket = bkt;
}

void
pk_bucket_insert_block(struct pk_membucket* bkt, const struct pk_memblock* block)
{
	// 2025-06-03 JCB
	// Note that this function should only be called if we're INSERTING.
	// This means that the block will never go at the END of the list - that would be an append.
	// It can, however, be placed at the beginning, in which case the entire array shifts.

	struct pk_memblock* new_block = NULL;
	struct pk_memblock* old_block = NULL;
	size_t i, k;

	// 1. resize if needed
	if (bkt->block_head_r+1 == bkt->block_capacity) {
		if (bkt->blocks[pk_memblock_blocks_idx(bkt, bkt->block_head_r)].size < sizeof(struct pk_memblock)) {
			PK_LOG_ERR("[pkmem.h] bkt out of memory when expanding memory blocks.");
			exit(1);
		}
		// this is all that needs done, arr can just grow like this
		bkt->blocks[pk_memblock_blocks_idx(bkt, bkt->block_head_r)].size -= sizeof(struct pk_memblock);
		bkt->block_capacity += 1;
		bkt->blocks -= 1;
	}

	// 2. move all blocks forward until we pass the pointer
	// reminder that these blocks are in REVERSE order
	for (i = bkt->block_head_r+1; i > 0; --i) {
		k = pk_memblock_blocks_idx(bkt, i);
		new_block = &bkt->blocks[k];
		old_block = new_block+1;
		*new_block = *old_block;
		if (old_block->data < block->data) {
			break;
		}
	}
	assert(old_block != NULL);
	if (i == 0 && old_block != NULL) {
		*old_block = *block;
	} else {
		*new_block = *block;
	}
	bkt->block_head_r += 1;
}

void
pk_bucket_collapse_blocks(struct pk_membucket* bkt)
{
	// 1. loop through from (rev_idx)0 to head_r, shifting any blocks that have size 0
	struct pk_memblock* new_block;
	struct pk_memblock* old_block;
	size_t i, ii, bhr;
	// there's an off by one annoynce here
	// start with ii = 0
	// if we start with ii = 1, we might subtract from block_head_r when nothing was shifted
	for (i = 0, ii = 0, bhr = bkt->block_head_r; (i + ii) <= bhr; ++i) {
		new_block = &bkt->blocks[pk_memblock_blocks_idx(bkt, i)];
		if (new_block->size > 0) continue;
		do {
			old_block = new_block - ii;
			if (old_block->size == 0) {
				ii+=1;
			} else {
				break;
			}
		} while (i + ii <= bhr);
		*new_block = *old_block;
		old_block->size = 0;
		old_block->ptr = NULL;
	}
	bkt->block_head_r -= ii;
}

void*
pk_new_bkt(size_t sz, size_t alignment, struct pk_membucket* bkt)
{
#ifdef PK_MEMORY_FORCE_MALLOC
	return malloc(sz);
#endif
	if (sz == 0) return NULL;
	if (bkt == NULL) return NULL;
	// TODO some type of error handling
	if ((bkt->size - bkt->head) < (sz + alignment - 1)) return NULL;
	size_t i, k;
	size_t calculatedAlignment = alignment < PK_MINIMUM_ALIGNMENT ? PK_MINIMUM_ALIGNMENT : alignment;
	size_t misalignment = 0;
	struct pk_memblock tmp_blk;
	struct pk_memblock* block = NULL;
	void* data = NULL;
	mtx_lock(&bkt->mtx);

	// find block
	for (i = 0; i <= bkt->block_head_r; ++i) {
		k = pk_memblock_blocks_idx(bkt, i);
		tmp_blk = bkt->blocks[k];
		misalignment = (size_t)(tmp_blk.data) % calculatedAlignment;
		misalignment = (calculatedAlignment - misalignment) % calculatedAlignment;
		if (tmp_blk.size < sz + misalignment) {
			continue;
		}
		block = &bkt->blocks[k];
		break;
	}
	if (block == NULL) {
		mtx_unlock(&bkt->mtx);
		assert(block != NULL && "memory corruption: not enough space in chosen bkt");
	}
	data = block->data + misalignment;
#ifdef PK_MEMORY_DEBUGGER
	size_t ii;
	if (PK_HAS_FLAG(bkt->flags, PK_MEMBUCKET_FLAG_TRANSIENT) == false) {
		for (i = 0; i < bkt->debug_head_r; ++i) {
			assert((bkt->debug_blocks[i].size == 0 || (void*)(bkt->debug_blocks[i].data) != data) && "mem address alloc'd twice!");
		}
		i = bkt->debug_head_l;
		if (bkt->debug_head_l == bkt->debug_head_r) {
			bkt->debug_head_l++;
			bkt->debug_head_r++;

			if (bkt->debug_head_r == bkt->debug_block_capacity) {
				struct pk_memblock *debug_blocks;
				debug_blocks = (struct pk_memblock*)aligned_alloc(alignof(struct pk_memblock), sizeof(struct pk_memblock) * (bkt->debug_block_capacity + 128));
				assert(debug_blocks != NULL);
				memcpy(debug_blocks, bkt->debug_blocks, sizeof(struct pk_memblock) * bkt->debug_block_capacity);
				free(bkt->debug_blocks);
				bkt->debug_blocks = debug_blocks;
				bkt->debug_block_capacity += 128;
			}

			bkt->debug_blocks[bkt->debug_head_r].ptr = NULL;
			bkt->debug_blocks[bkt->debug_head_r].size = 0;

		} else {
			// 2025-06-05 JCB
			// This intentionally looks at debug_head_r, which could potentially
			//  be uninitialized. I added some logic elsewhere to ensure that
			//  whenever debug_head_r is incremented, we set the related block
			//  to NULL/0 so that this will catch size==0.
			// I was experiencing an issue where in testing it was initialized to
			//  NULL/0, but then in a client application it was garbage data.
			for (ii = bkt->debug_head_l+1; ii <= bkt->debug_head_r; ++ii) {
				if (bkt->debug_blocks[ii].size == 0) {
					bkt->debug_head_l = ii;
					break;
				}
			}
			assert(ii != bkt->debug_head_r+1);
		}
		assert(bkt->debug_head_l <= bkt->debug_head_r);
		bkt->debug_blocks[i].data = (char*)data;
		bkt->debug_blocks[i].size = sz;
	}
#endif
	if (block->data == pk_bkt_head(bkt)) {
		bkt->head += (sz + misalignment);
	}

	tmp_blk.data = block->data;
	tmp_blk.size = misalignment;
	block->data += misalignment + sz;
	block->size -= misalignment + sz;

	if (tmp_blk.size > 0) {
		pk_bucket_insert_block(bkt, &tmp_blk);
	}
	pk_bucket_collapse_blocks(bkt);

	bkt->alloc_count++;
	assert(data >= (void*)pk_bkt_data(bkt) && "allocated data is before bucket data");
	assert((char*)data <= pk_bkt_data(bkt) + bkt->size && "allocated data is after bucket data");
#ifdef PK_MEMORY_DEBUGGER
	if (PK_HAS_FLAG(bkt->flags, PK_MEMBUCKET_FLAG_TRANSIENT) == false) {
		size_t k;
		int64_t debug_tracked_alloc_size = 0;
		int64_t debug_bucket_alloc_size = pk_bkt_data_sz(bkt);
		for (i = 0; i < bkt->debug_head_r; ++i) {
			debug_tracked_alloc_size += bkt->debug_blocks[i].size;
		}
		for (i = 0; i <= bkt->block_head_r; ++i) {
			k = pk_memblock_blocks_idx(bkt, i);
			debug_bucket_alloc_size -= bkt->blocks[k].size;
		}
		assert(debug_tracked_alloc_size == debug_bucket_alloc_size && "allocation size mismatch!");
	}
#endif
	mtx_unlock(&bkt->mtx);
	memset(data, 0, sz);
	return data;
}

void*
pk_new_base(size_t sz, size_t alignment)
{
	if (client_bucket == NULL) return NULL;
	return pk_new_bkt(sz, alignment, client_bucket);
}

void*
pk_new(size_t sz, size_t alignment, struct pk_membucket* bkt)
{
	if (bkt != NULL) return pk_new_bkt(sz, alignment, bkt);
	return pk_new_base(sz, alignment);
}

void
pk_delete_bkt(const void* ptr, size_t sz, struct pk_membucket* bkt)
{
#ifdef PK_MEMORY_FORCE_MALLOC
#if defined(__cplusplus)
	std::free(const_cast<void*>(ptr));
#else
	free((void*)ptr);
#endif
	return;
#endif
	size_t i, k;
	mtx_lock(&bkt->mtx);
	assert(bkt->alloc_count > 0);
	assert(pk_mem_bucket_ptr_is_in_mem_bucket(ptr, bkt) && "pointer not in memory bucket range");
	assert(sz > 0 && "attempted to free pointer of size 0");
#ifdef PK_MEMORY_DEBUGGER
	bool found = PK_HAS_FLAG(bkt->flags, PK_MEMBUCKET_FLAG_TRANSIENT);
	struct pk_memblock *debug_memblocks = bkt->debug_blocks;
	struct pk_memblock *mb;
	if (found == false) {
		for (i = bkt->debug_head_r+1; i > 0; --i) {
			mb = &debug_memblocks[i-1];
			if (mb->size == 0) continue;
			if ((void*)(mb->ptr) == ptr) {
				assert(mb->size == sz && "[pkmem.h] incorrect free size");
				mb->ptr = NULL;
				mb->size = 0;
				found = true;
				if (i <= bkt->debug_head_l) {
					bkt->debug_head_l = i-1;
				}
				if (i == bkt->debug_head_r+1) {
					if (bkt->debug_head_l == bkt->debug_head_r) {
						bkt->debug_head_l--;
					}
					bkt->debug_head_r--;
				}
				assert(bkt->debug_head_l <= bkt->debug_head_r);
				break;
			}
		}
	}
	assert(found && "[pkmem.h] double free or invalid ptr");
#endif
	bkt->alloc_count--;
	if (bkt->alloc_count == 0) {
		bkt->head = 0;
		bkt->block_head_l = 0;
		bkt->block_head_r = 0;
		bkt->blocks[pk_memblock_blocks_idx(bkt, 0)].data = pk_bkt_data(bkt);
		bkt->blocks[pk_memblock_blocks_idx(bkt, 0)].size = pk_bkt_data_sz(bkt);
#ifdef PK_MEMORY_DEBUGGER
		bkt->debug_head_l = 0;
		bkt->debug_head_r = 0;
		bkt->debug_blocks[0].data = NULL;
		bkt->debug_blocks[0].size = 0;
#endif
		mtx_unlock(&bkt->mtx);
		return;
	}
	char* afterPtr = ((char*)(ptr))+sz;
	struct pk_memblock* tmp_blk = NULL;
	struct pk_memblock* beforeBlk = NULL;
	struct pk_memblock* afterBlk = NULL;
	for (i = bkt->block_head_r+1; i > 0 ; --i) {
		k = pk_memblock_blocks_idx(bkt, (i-1));
		tmp_blk = &bkt->blocks[k];
		if (tmp_blk->data + tmp_blk->size == ptr) {
			beforeBlk = tmp_blk;
			break;
		}
		if (i <= bkt->block_head_r+1 && tmp_blk->data == afterPtr) {
			afterBlk = tmp_blk;
			continue;
		}
		if (tmp_blk->data < (char*)ptr) {
			break;
		}
	}
	if (ptr == &bkt->data[0] && afterBlk == NULL && bkt->blocks[pk_memblock_blocks_idx(bkt, 0)].data == afterPtr) {
		afterBlk = &bkt->blocks[pk_memblock_blocks_idx(bkt, 0)];
	}
	if (afterBlk != NULL && afterBlk->data == pk_bkt_head(bkt)) {
		bkt->head -= sz;
		if (beforeBlk != NULL) {
			bkt->head -= beforeBlk->size;
		}
	}
	if (beforeBlk == NULL && afterBlk == NULL) {
		struct pk_memblock newBlock;
		memset(&newBlock, 0, sizeof(struct pk_memblock));
		newBlock.data = (char*)ptr;
		newBlock.size = sz;
		pk_bucket_insert_block(bkt, &newBlock);
	} else if (beforeBlk != NULL && afterBlk != NULL) {
		beforeBlk->size += sz + afterBlk->size;
		if (beforeBlk->data == pk_bkt_head(bkt)) {
			bkt->block_head_r--;
		}
		afterBlk->size = 0;
		afterBlk->data = NULL;
	} else if (beforeBlk != NULL) {
		beforeBlk->size += sz;
	} else if (afterBlk != NULL) {
		afterBlk->data -= sz;
		afterBlk->size += sz;
	}
	pk_bucket_collapse_blocks(bkt);
#ifdef PK_MEMORY_DEBUGGER
	if (PK_HAS_FLAG(bkt->flags, PK_MEMBUCKET_FLAG_TRANSIENT) == false) {
		int64_t debug_tracked_alloc_size = 0;
		int64_t debug_bucket_alloc_size = pk_bkt_data_sz(bkt);
		for (i = 0; i < bkt->debug_head_r; ++i) {
			debug_tracked_alloc_size += bkt->debug_blocks[i].size;
		}
		for (i = 0; i <= bkt->block_head_r; ++i) {
			k = pk_memblock_blocks_idx(bkt, i);
			debug_bucket_alloc_size -= bkt->blocks[k].size;
		}
		assert(debug_tracked_alloc_size == debug_bucket_alloc_size && "allocation size mismatch!");
	}
#endif
	mtx_unlock(&bkt->mtx);
}

void
pk_delete_base(const void* ptr, size_t sz)
{
	pk_delete_bkt(ptr, sz, client_bucket);
}

void
pk_delete(const void* ptr, size_t sz, struct pk_membucket* bkt)
{
	if (bkt != NULL) {
		pk_delete_bkt(ptr, sz, bkt);
		return;
	}
	pk_delete_base(ptr, sz);
	return;
}

#endif /* PK_IMPL_MEM */
#ifndef PK_STR_H
#define PK_STR_H


#include <stdint.h>

struct pk_str {
	char *val;
	uint32_t length;
	uint32_t reserved;
};
struct pk_cstr {
	const char *val;
	uint32_t length;
	uint32_t reserved;
};

struct pk_str cstring_to_pk_str(char *s);
struct pk_cstr cstring_to_pk_cstr(const char *s);
struct pk_str pk_cstr_to_pk_str(const struct pk_cstr *s);
struct pk_cstr pk_str_to_pk_cstr(const struct pk_str *s);
struct pk_str pk_str_clone(const struct pk_str *s, struct pk_membucket *bkt);
struct pk_cstr pk_cstr_clone(const struct pk_cstr *s, struct pk_membucket *bkt);
int pk_compare_str(const struct pk_str *lhs, const struct pk_str *rhs);
int pk_compare_cstr(const struct pk_cstr *lhs, const struct pk_cstr *rhs);

#endif /* PK_STR_H */

#ifdef PK_IMPL_STR

#include <string.h>

struct pk_str
cstring_to_pk_str(char *s)
{
	struct pk_str ret;
	ret.val = s;
	ret.length = (uint32_t)(strlen(s));
	ret.reserved = 0;
	return ret;
}

struct pk_cstr
cstring_to_pk_cstr(const char *s)
{
	struct pk_cstr ret;
	ret.val = s;
	ret.length = (uint32_t)(strlen(s));
	ret.reserved = 0;
	return ret;
}

struct pk_str
pk_cstr_to_pk_str(const struct pk_cstr *s)
{
	struct pk_str ret;
	ret.val = (char *)s->val;
	ret.length = s->length;
	ret.reserved = s->reserved;
	return ret;
}

struct pk_cstr
pk_str_to_pk_cstr(const struct pk_str *s)
{
	struct pk_cstr ret;
	ret.val = (char *)s->val;
	ret.length = s->length;
	ret.reserved = s->reserved;
	return ret;
}

struct pk_str
pk_str_clone(const struct pk_str *s, struct pk_membucket *bkt) {
	struct pk_str str;
	str.length = s->length == 0 ? strlen(s->val) : s->length;
	str.reserved = s->length + 1;
	char *ss = (char*)pk_new(str.reserved * sizeof(char), alignof(char), bkt);
	strncpy(ss, s->val, str.reserved);
	str.val = ss;
	return str;
}

struct pk_cstr
pk_cstr_clone(const struct pk_cstr *s, struct pk_membucket *bkt) {
	struct pk_cstr str;
	str.length = s->length == 0 ? strlen(s->val) : s->length;
	str.reserved = s->length + 1;
	char *ss = (char*)pk_new(str.reserved * sizeof(char), alignof(char), bkt);
	strncpy(ss, s->val, str.reserved);
	str.val = ss;
	return str;
}

int
pk_compare_str(const struct pk_str *lhs, const struct pk_str *rhs)
{
	return strncmp(lhs->val, rhs->val, PK_MIN(lhs->length, rhs->length));
}

int
pk_compare_cstr(const struct pk_cstr *lhs, const struct pk_cstr *rhs)
{
	return strncmp(lhs->val, rhs->val, PK_MIN(lhs->length, rhs->length));
}

#endif /* PK_IMPL_STR */
#ifndef PK_EV_H
#define PK_EV_H


#include <stdint.h>

typedef uint64_t pk_ev_mgr_id_T;
typedef uint64_t pk_ev_id_T;
typedef uint64_t pk_ev_cb_id_T;

const pk_ev_mgr_id_T pk_ev_mgr_id_T_MAX = 0xFFFFFFFFFFFFFFFF;
const pk_ev_id_T     pk_ev_id_T_MAX     = 0xFFFFFFFFFFFFFFFF;
const pk_ev_cb_id_T  pk_ev_cb_id_T_MAX  = 0xFFFFFFFFFFFFFFFF;

// TODO re-think threading

// note: pk_ev_init() is NOT thread-safe
void pk_ev_init(struct pk_membucket *bkt);
// note: pk_ev_teardown() is NOT thread-safe
void pk_ev_teardown();

pk_ev_mgr_id_T pk_ev_create_mgr();
void pk_ev_destroy_mgr(pk_ev_mgr_id_T evmgr);

typedef void (pk_ev_cb_fn)(void *user_event_data, void *user_cb_data, void *user_ev_data);

pk_ev_id_T pk_ev_register_ev(pk_ev_mgr_id_T evmgr, void *user_ev_data);
pk_ev_cb_id_T pk_ev_register_cb(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid, pk_ev_cb_fn *cb, void *user_cb_data);
void pk_ev_emit(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid, void *user_emit_data);

void pk_ev_unregister_ev(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid);
void pk_ev_unregister_cb(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid, pk_ev_cb_id_T cbid);

#endif /* PK_EV_H */

#ifdef PK_IMPL_EV


#include <assert.h>
#include <stdatomic.h>
#include <stdio.h>
#include <stdlib.h>
#include <threads.h>

#ifndef PK_EV_INIT_MGR_COUNT
# define PK_EV_INIT_MGR_COUNT 1
#endif

#ifndef PK_EV_INIT_EV_COUNT
# define PK_EV_INIT_EV_COUNT 16
#endif

#ifndef PK_EV_INIT_CB_COUNT
# define PK_EV_INIT_CB_COUNT 8
#endif

#ifndef PK_EV_GROW_RATIO
# define PK_EV_GROW_RATIO 1.5
#endif

// hard limits
// PK_EV_MAX_EV_COUNT would require a refactor for keeping track of used slots
#define PK_EV_MAX_EV_COUNT 64
// PK_EV_MAX_CB_COUNT could be increased as desired
#define PK_EV_MAX_CB_COUNT 255

#ifndef PK_EV_MEM_ALLOC
# define PK_EV_MEM_ALLOC(sz, alignment, bkt) pk_new(sz, alignment, bkt)
#endif

#ifndef PK_EV_MEM_FREE
# define PK_EV_MEM_FREE(ptr, sz, bkt) pk_delete(ptr, sz, bkt)
#endif

struct pk_ev_cb {
	pk_ev_cb_fn *cb;
	void *user_cb_data;
};

struct pk_ev {
	struct pk_ev_cb *ev_cbs;
	void *user_ev_data;
	atomic_uint_fast64_t left_ev_cbs;
	atomic_uint_fast64_t right_ev_cbs;
};

struct pk_ev_mgr {
	struct pk_ev *ev;
	atomic_uint_fast64_t left_evs;
	atomic_uint_fast64_t right_evs;
	atomic_uint_fast64_t unused_evs;
	// reserved length of `pk_ev`s on this struct
	atomic_uint_fast64_t rn_ev;
	// on any given `pk_ev`, the number of callbacks reserved
	atomic_uint_fast64_t rn_cb;
};

struct pk_ev_mstr {
	atomic_uint_fast64_t flg_mgrs;
	atomic_uint_fast64_t rn_mgrs;
	struct pk_ev_mgr **mgrs;
	mtx_t *mtxs;
	struct pk_membucket *bkt;
};

struct pk_ev_mstr pk_ev_mstr;

void
pk_ev_init(struct pk_membucket* bkt)
{
	int i;
	pk_ev_mstr.bkt = bkt;
	pk_ev_mstr.mgrs = (struct pk_ev_mgr **)PK_EV_MEM_ALLOC(sizeof(void *) *
			PK_EV_INIT_MGR_COUNT, alignof(void *), bkt);
	pk_ev_mstr.mtxs = (mtx_t*)PK_EV_MEM_ALLOC(sizeof(mtx_t) * PK_EV_INIT_MGR_COUNT, alignof(mtx_t), bkt);
	memset(pk_ev_mstr.mgrs, 0, sizeof(void *) * PK_EV_INIT_MGR_COUNT);
	memset(pk_ev_mstr.mtxs, 0, sizeof(mtx_t) * PK_EV_INIT_MGR_COUNT);
	for (i = 0; i < PK_EV_INIT_MGR_COUNT; ++i) {
		mtx_init(&pk_ev_mstr.mtxs[i], mtx_plain);
	}
	atomic_store(&pk_ev_mstr.flg_mgrs, 0lu);
	atomic_store(&pk_ev_mstr.rn_mgrs, PK_EV_INIT_MGR_COUNT);
}

size_t
pk_ev_inner_calc_sz(uint64_t ev_count, uint64_t cb_count, size_t *sz_ev_list, size_t *sz_ev_cb_list)
{
	// base sizes
	size_t l_sz_ev_list    = sizeof(struct pk_ev) * ev_count;
	size_t l_sz_ev_cb_list = sizeof(struct pk_ev_cb) * cb_count;
	l_sz_ev_list          += ((size_t)64 - alignof(struct pk_ev))    % (size_t)64;
	l_sz_ev_cb_list       += ((size_t)64 - alignof(struct pk_ev_cb)) % (size_t)64;
	if (sz_ev_list    != nullptr) *sz_ev_list    = l_sz_ev_list;
	if (sz_ev_cb_list != nullptr) *sz_ev_cb_list = l_sz_ev_cb_list;

	size_t ret = sizeof(struct pk_ev_mgr);
	ret += l_sz_ev_list;
	ret += l_sz_ev_cb_list * ev_count;
	return ret;
}

void
pk_ev_teardown()
{
	long unsigned int i;
	for (i = 0; i < atomic_load(&pk_ev_mstr.rn_mgrs); ++i) {
		if ((atomic_load(&pk_ev_mstr.flg_mgrs) & (1lu << i)) == 0lu) continue;
		mtx_lock(&pk_ev_mstr.mtxs[i]);
		size_t sz = pk_ev_inner_calc_sz(
			atomic_load(&pk_ev_mstr.mgrs[i]->rn_ev),
			atomic_load(&pk_ev_mstr.mgrs[i]->rn_cb),
			NULL, NULL
		);
		PK_EV_MEM_FREE(pk_ev_mstr.mgrs[i], sz, pk_ev_mstr.bkt);
		pk_ev_mstr.mgrs[i] = NULL;
		mtx_unlock(&pk_ev_mstr.mtxs[i]);
		mtx_destroy(&pk_ev_mstr.mtxs[i]);
	}
	PK_EV_MEM_FREE(pk_ev_mstr.mgrs, sizeof(void *) * atomic_load(&pk_ev_mstr.rn_mgrs), pk_ev_mstr.bkt);
	PK_EV_MEM_FREE(pk_ev_mstr.mtxs, sizeof(mtx_t) * atomic_load(&pk_ev_mstr.rn_mgrs), pk_ev_mstr.bkt);
	pk_ev_mstr.mgrs = NULL;
	pk_ev_mstr.mtxs = NULL;
}

static struct pk_ev_mgr*
pk_ev_inner_ev_mgr_create(uint64_t ev_count, uint64_t cb_count)
{
	assert(ev_count < 0x100);
	assert(cb_count < 0x100);
	uint64_t i;
	char *ptr;
	struct pk_ev *ev;
	size_t sz_ev_list;
	size_t sz_ev_cb_list;
	size_t sz_offset;
	size_t sz = pk_ev_inner_calc_sz(ev_count, cb_count, &sz_ev_list, &sz_ev_cb_list);

	struct pk_ev_mgr *mgr = (struct pk_ev_mgr*)PK_EV_MEM_ALLOC(sz, alignof(struct pk_ev_mgr), pk_ev_mstr.bkt);
	if (mgr == NULL) goto early_exit;

	ptr = ((char *)mgr) + sizeof(struct pk_ev_mgr);
	sz_offset = (size_t)ptr % alignof(struct pk_ev);
	ptr += ((size_t)64 - sz_offset) % (size_t)64;
	mgr->ev = (struct pk_ev*)ptr;
	atomic_init(&mgr->rn_ev, ev_count);
	atomic_init(&mgr->rn_cb, cb_count);
	atomic_init(&mgr->left_evs, 0);
	atomic_init(&mgr->right_evs, 0);
	atomic_init(&mgr->unused_evs, 0xFFFFFFFFFFFFFFFF);
	// find mem-aligned beginning of cb array
	ptr += sz_ev_list;
	sz_offset = (size_t)ptr % alignof(struct pk_ev_cb);
	ptr += ((size_t)64 - sz_offset) % (size_t)64;
	for (i = 0; i < ev_count; ++i) {
		ev = &mgr->ev[i];
		atomic_init(&ev->left_ev_cbs, 0);
		atomic_init(&ev->right_ev_cbs, 0);
		sz_offset = sz_ev_cb_list * i;
		ev->ev_cbs = (struct pk_ev_cb*)(ptr + sz_offset);
	}

	/* debug
	fprintf(stdout, "[%s] mgr: sz: %lu, ev_count: %lu, cb_count: %lu \n", __FILE__, sz, ev_count, cb_count);
	fprintf(stdout, "\t%p - ptr\n", (void*)mgr);
	fprintf(stdout, "\t%p - evs (+%lu)\n", (void*)mgr->ev, (char*)mgr->ev - (char*)mgr);
	fprintf(stdout, "\t%p - cbs (+%lu)\n", (void*)mgr->ev[0].ev_cbs, (char*)mgr->ev[0].ev_cbs - (char*)mgr);
	*/
early_exit:
	return mgr;
}

static void
pk_ev_inner_ev_mgr_clone(struct pk_ev_mgr *old, struct pk_ev_mgr *mgr)
{
	uint64_t i, ii;
	uint64_t u, uu;
	struct pk_ev *ev_old;
	struct pk_ev *ev;
	ii = atomic_load(&old->right_evs);
	atomic_store(&mgr->left_evs, atomic_load(&old->left_evs));
	atomic_store(&mgr->right_evs, ii);
	atomic_store(&mgr->unused_evs, atomic_load(&old->unused_evs));
	for (i = 0; i < ii; ++i) {
		ev_old = &old->ev[i];
		ev = &mgr->ev[i];
		ev->user_ev_data = ev_old->user_ev_data;
		uu = atomic_load(&ev_old->right_ev_cbs);
		for (u = 0; u <= uu; ++u) {
			ev->ev_cbs[u].cb           = ev_old->ev_cbs[u].cb;
			ev->ev_cbs[u].user_cb_data = ev_old->ev_cbs[u].user_cb_data;
		}
		atomic_store(&ev->left_ev_cbs, atomic_load(&ev_old->left_ev_cbs));
		atomic_store(&ev->right_ev_cbs, atomic_load(&ev_old->right_ev_cbs));
	}
}

pk_ev_mgr_id_T
pk_ev_create_mgr()
{
	uint64_t i;
	pk_ev_mgr_id_T flg;
	pk_ev_mgr_id_T flg_new;
	pk_ev_mgr_id_T id;
	struct pk_ev_mgr *mgr = pk_ev_inner_ev_mgr_create(PK_EV_INIT_EV_COUNT, PK_EV_INIT_CB_COUNT);
	if (mgr == NULL) return -1;
start:
	flg = atomic_load(&pk_ev_mstr.flg_mgrs);
	while (1) {
		flg_new = flg;
		for (i = 0; i < atomic_load(&pk_ev_mstr.rn_mgrs); ++i) {
			if ((flg & (1lu << i)) == 0) break;
		}
		if (i == atomic_load(&pk_ev_mstr.rn_mgrs)) {
			goto recreate;
		}
		id = i;
		flg_new |= (1lu << i);
		if (atomic_compare_exchange_weak(&pk_ev_mstr.flg_mgrs, &flg, flg_new)) break;
		thrd_yield();
	}
	pk_ev_mstr.mgrs[id]= mgr;
	return id;
recreate:
	// TODO recreate mgr, out of space
	assert(1 == 0 && "[pkev.h] Out of mgr space.");
	exit(1);
	goto start;
}

void
pk_ev_destroy_mgr(pk_ev_mgr_id_T evmgr)
{
	pk_ev_mgr_id_T flg;
	pk_ev_mgr_id_T flg_new;
	assert(evmgr < pk_ev_mstr.rn_mgrs);
	mtx_lock(&pk_ev_mstr.mtxs[evmgr]);

	size_t old_sz = pk_ev_inner_calc_sz(pk_ev_mstr.mgrs[evmgr]->rn_ev, pk_ev_mstr.mgrs[evmgr]->rn_cb, NULL, NULL);
	PK_EV_MEM_FREE(pk_ev_mstr.mgrs[evmgr], old_sz, pk_ev_mstr.bkt);
	pk_ev_mstr.mgrs[evmgr] = NULL;

	flg = atomic_load(&pk_ev_mstr.flg_mgrs);
	while (1) {
		flg_new = flg;
		flg_new &= ~(1lu << evmgr);
		if (atomic_compare_exchange_weak(&pk_ev_mstr.flg_mgrs, &flg, flg_new)) break;
		thrd_yield();
	}

	mtx_unlock(&pk_ev_mstr.mtxs[evmgr]);
}

pk_ev_id_T
pk_ev_register_ev(pk_ev_mgr_id_T evmgr, void *user_ev_data)
{
	assert(evmgr < 64);
	uint64_t new_size;
	uint64_t i, ii, flg;
	pk_ev_id_T id;
	struct pk_ev_mgr *mgr = nullptr;
	mtx_lock(&pk_ev_mstr.mtxs[evmgr]);
	mgr = pk_ev_mstr.mgrs[evmgr];
	if (mgr->left_evs == mgr->right_evs && mgr->right_evs == mgr->rn_ev) {
		new_size = PK_MAX(2, PK_MIN(PK_EV_MAX_EV_COUNT, mgr->rn_ev * PK_EV_GROW_RATIO));
		if (new_size == mgr->rn_ev) {
			PK_LOG_ERR("[pkev.h] need more room, but failed to grow ev count.\n");
			mtx_unlock(&pk_ev_mstr.mtxs[evmgr]);
			exit(1);
		}
		mgr = pk_ev_inner_ev_mgr_create(new_size, pk_ev_mstr.mgrs[evmgr]->rn_cb);
		pk_ev_inner_ev_mgr_clone(pk_ev_mstr.mgrs[evmgr], mgr);
		size_t old_sz = pk_ev_inner_calc_sz(pk_ev_mstr.mgrs[evmgr]->rn_ev, pk_ev_mstr.mgrs[evmgr]->rn_cb, NULL, NULL);
		PK_EV_MEM_FREE(pk_ev_mstr.mgrs[evmgr], old_sz, pk_ev_mstr.bkt);
		pk_ev_mstr.mgrs[evmgr] = mgr;
	}
	id = atomic_load(&mgr->left_evs);
	flg = atomic_load(&mgr->unused_evs);
	if (mgr->left_evs != mgr->right_evs) {
		i = atomic_load(&mgr->left_evs) + 1;
		ii = atomic_load(&mgr->rn_ev);
		for (; i <= ii; ++i) {
			if (flg & (1lu << i)) {
				break;
			}
		}
		atomic_store(&mgr->left_evs, i);
	} else {
		atomic_store(&mgr->left_evs, atomic_load(&mgr->left_evs) + 1);
		atomic_store(&mgr->right_evs, atomic_load(&mgr->right_evs) + 1);
	}
	atomic_store(&mgr->unused_evs, flg & ~(1lu << id));
	mtx_unlock(&pk_ev_mstr.mtxs[evmgr]);
	mgr->ev[id].user_ev_data = user_ev_data;
	return id;
}

pk_ev_cb_id_T
pk_ev_register_cb(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid, pk_ev_cb_fn *cb, void *user_cb_data)
{
	assert(evmgr < PK_EV_INIT_MGR_COUNT);
	bool found = false;
	uint64_t new_size, i;
	struct pk_ev_mgr *mgr = nullptr;
	pk_ev_cb_id_T cb_index;
	if (pk_ev_mstr.mgrs[evmgr] == nullptr) {
		PK_LOGV_ERR("[pkev.h] unknown manager: '%lu'.\n", evmgr);
		exit(1);
	}
	for (i = pk_ev_mstr.mgrs[evmgr]->ev[evid].left_ev_cbs; i < pk_ev_mstr.mgrs[evmgr]->ev[evid].right_ev_cbs; ++i) {
		if (found == false && pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[i].cb != nullptr) {
			found = true;
			cb_index = i;
			continue;
		}
		if (found == false) continue;
		if (pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[i].cb == nullptr) {
			pk_ev_mstr.mgrs[evmgr]->ev[evid].left_ev_cbs = i;
			break;
		}
	}
	if (found == false) {
		mtx_lock(&pk_ev_mstr.mtxs[evmgr]);
		if (pk_ev_mstr.mgrs[evmgr]->ev[evid].right_ev_cbs == pk_ev_mstr.mgrs[evmgr]->rn_cb) {
			size_t old_sz = pk_ev_inner_calc_sz(pk_ev_mstr.mgrs[evmgr]->rn_ev, pk_ev_mstr.mgrs[evmgr]->rn_cb, NULL, NULL);
			new_size = PK_MAX(2, PK_MIN(PK_EV_MAX_CB_COUNT, pk_ev_mstr.mgrs[evmgr]->rn_cb * PK_EV_GROW_RATIO));
			if (new_size == pk_ev_mstr.mgrs[evmgr]->rn_cb) {
				PK_LOG_ERR("[pkev.h] need more room, but failed to grow cb count.\n");
				mtx_unlock(&pk_ev_mstr.mtxs[evmgr]);
				exit(1);
			}
			mgr = pk_ev_inner_ev_mgr_create(pk_ev_mstr.mgrs[evmgr]->rn_ev, new_size);
			pk_ev_inner_ev_mgr_clone(pk_ev_mstr.mgrs[evmgr], mgr);
			PK_EV_MEM_FREE(pk_ev_mstr.mgrs[evmgr], old_sz, pk_ev_mstr.bkt);
			pk_ev_mstr.mgrs[evmgr] = mgr;
			mgr = nullptr;
		}
		cb_index = pk_ev_mstr.mgrs[evmgr]->ev[evid].right_ev_cbs++;
		mtx_unlock(&pk_ev_mstr.mtxs[evmgr]);
		if (cb_index == pk_ev_mstr.mgrs[evmgr]->ev[evid].left_ev_cbs) {
			pk_ev_mstr.mgrs[evmgr]->ev[evid].left_ev_cbs++;
		}
	}
	pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[cb_index].cb = cb;
	pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[cb_index].user_cb_data = user_cb_data;
	return cb_index;
}

void
pk_ev_emit(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid, void *user_emit_data)
{
	assert(evmgr < PK_EV_INIT_MGR_COUNT);
	uint8_t i;
	for (i = 0; i < pk_ev_mstr.mgrs[evmgr]->ev[evid].right_ev_cbs; ++i) {
		if (pk_ev_mstr.mgrs[evmgr] == nullptr) continue;
		if (pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[i].cb == nullptr) continue;
		(*pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[i].cb)(
			pk_ev_mstr.mgrs[evmgr]->ev[evid].user_ev_data,
			pk_ev_mstr.mgrs[evmgr]->ev[evid].ev_cbs[i].user_cb_data,
			user_emit_data);
	}
}

void
pk_ev_unregister_ev(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid)
{
	assert(evmgr <= pk_ev_mstr.rn_mgrs);
	struct pk_ev_mgr *mgr = pk_ev_mstr.mgrs[evmgr];
	assert(evid <= mgr->right_evs);
	if (mgr == nullptr) return;
	mgr->ev[evid].user_ev_data = NULL;
	atomic_store(&mgr->ev[evid].left_ev_cbs, 0);
	atomic_store(&mgr->ev[evid].right_ev_cbs, 0);
	for (uint64_t u = 0; u < mgr->rn_cb; ++u) {
		mgr->ev[evid].ev_cbs[u].cb = NULL;
		mgr->ev[evid].ev_cbs[u].user_cb_data = NULL;
	}
	atomic_store(&mgr->unused_evs, atomic_load(&mgr->unused_evs) | (1lu << evid));
	if (evid < atomic_load(&mgr->left_evs)) {
		atomic_store(&mgr->left_evs, evid);
	}
}

void
pk_ev_unregister_cb(pk_ev_mgr_id_T evmgr, pk_ev_id_T evid, pk_ev_cb_id_T cbid)
{
	struct pk_ev_mgr *mgr = pk_ev_mstr.mgrs[evmgr];
	if (mgr == nullptr) return;
	if (mgr->ev[evid].left_ev_cbs > cbid) {
		mgr->ev[evid].left_ev_cbs = cbid;
	}
	mgr->ev[evid].ev_cbs[cbid].cb = nullptr;
	mgr->ev[evid].ev_cbs[cbid].user_cb_data = nullptr;
}

#endif /* PK_IMPL_EV */
#ifndef PK_PKITER_H
#define PK_PKITER_H

union pk_iter_id {
	struct pk_iter_bkt_handle {
		unsigned int b : 24;
		unsigned int i : 8;
	} bkt;
	struct pk_iter_arr_idx {
		unsigned int i : 32;
	} arr;
};

struct pk_iter {
	void *data;
	union pk_iter_id id;
};

#if defined (__cplusplus)
template <typename T>
struct pk_iter_t : public pk_iter {
	operator T*() {
		return reinterpret_cast<T*>(this->data);
	}
	T* operator->() {
		return reinterpret_cast<T*>(this->data);
	}
};
#endif

#endif /* PK_PKITER_H */
#ifndef PK_PKARR_H
#define PK_PKARR_H

#include <stdint.h>

struct pk_arr {
	uint32_t next;
	uint32_t reserved;
	uint32_t stride;
	uint32_t alignment;
	struct pk_membucket *bkt;
	void *data;
};

typedef bool(pk_arr_item_compare)(void *user_data, void *item);

void pk_arr_clear(struct pk_arr *arr);
void pk_arr_reset(struct pk_arr *arr);
void pk_arr_reserve(struct pk_arr *arr, uint32_t count);
void pk_arr_resize(struct pk_arr *arr, uint32_t count);
void pk_arr_move_to_back(struct pk_arr *arr, uint32_t index);
void pk_arr_append(struct pk_arr *arr, void *data);
void pk_arr_remove_at(struct pk_arr *arr, uint32_t index);
void pk_arr_clone(struct pk_arr *lhs, struct pk_arr *rhs);
void pk_arr_swap(struct pk_arr *lhs, struct pk_arr *rhs);
uint32_t pk_arr_find_first_index(struct pk_arr *arr, void *user_data, pk_arr_item_compare *fn);
bool pk_arr_iter_begin(struct pk_arr *arr, struct pk_iter *it);
bool pk_arr_iter_end(struct pk_arr *arr, struct pk_iter *it);
bool pk_arr_iter_increment(struct pk_arr *arr, struct pk_iter *it);
bool pk_arr_iter_decrement(struct pk_arr *arr, struct pk_iter *it);

#if defined(__cplusplus)
template<typename T>
struct pk_arr_t : public pk_arr {
	pk_arr_t();
	pk_arr_t(struct pk_membucket *bkt);
	pk_arr_t(const pk_arr_t<T> &other);
	pk_arr_t(pk_arr_t<T> &&other);
	pk_arr_t &operator=(const pk_arr_t<T> &other);
	pk_arr_t &operator=(pk_arr_t<T> &&other);
	T &operator[](size_t index);
};
template<typename T>
pk_arr_t<T>::pk_arr_t() {
	this->next = 0;
	this->reserved = 0;
	this->stride = sizeof(T);
	this->alignment = alignof(T);
	this->bkt = NULL;
	this->data = NULL;
}
template<typename T>
pk_arr_t<T>::pk_arr_t(struct pk_membucket *bkt) : pk_arr_t<T>() {
	this->bkt = bkt;
}
template<typename T>
pk_arr_t<T>::pk_arr_t(const pk_arr_t<T> &other) {
	// copy ctor
	pk_arr_clone(static_cast<struct pk_arr_t *>(&const_cast<pk_arr_t<T>&>(other)), this);
}
template<typename T>
pk_arr_t<T>::pk_arr_t(pk_arr_t<T> &&other) {
	// move ctor
	pk_arr_swap(this, &other);
	other.data = NULL;
}
template<typename T>
pk_arr_t<T> &
pk_arr_t<T>::operator=(const pk_arr_t<T> &other) {
	// copy assignment
	if (this->data != NULL) {
		pk_arr_reset(this);
	}
	pk_arr_clone(static_cast<struct pk_arr_t *>(&const_cast<pk_arr_t<T>&>(other)), this);
	return *this;
}
template<typename T>
pk_arr_t<T> &
pk_arr_t<T>::operator=(pk_arr_t<T> &&other) {
	// move assignment
	if (this->data != NULL) {
		pk_arr_reset(this);
	}
	pk_arr_swap(this, &other);
	other.data = NULL;
	return *this;
}
template<typename T>
T &pk_arr_t<T>::operator[](size_t index) {
	if(index >= this->next) throw "pk_arr_t<T>::operator[] out of range";
	return reinterpret_cast<T*>(this->data)[index];
}
template<typename T>
void pk_arr_append_t(pk_arr_t<T> *arr, const T &item) {
	pk_arr_append(arr, &const_cast<T&>(item));
}
#endif

#endif /* PK_PKARR_H */
#ifdef PK_IMPL_ARR


#include <string.h>

#ifndef PK_ARR_GROW_RATIO
#define PK_ARR_GROW_RATIO 1.5
#endif
#ifndef PK_ARR_INITIAL_COUNT
#define PK_ARR_INITIAL_COUNT 16
#endif

void
pk_arr_clear(struct pk_arr *arr)
{
	arr->next = 0;
}

void
pk_arr_reset(struct pk_arr *arr)
{
	if (arr->data != NULL) pk_delete(arr->data, arr->stride * arr->reserved, arr->bkt);
	arr->data = NULL;
	arr->next = 0;
	arr->reserved = 0;
}

void
pk_arr_reserve(struct pk_arr *arr, uint32_t count)
{
	if (arr->reserved >= count) return;
	void *new_data = pk_new(arr->stride * count, arr->alignment, arr->bkt);
	if (arr->data != NULL) {
		if (arr->next != 0) {
			memcpy(new_data, arr->data, arr->stride * arr->reserved);
		}
		pk_delete(arr->data, arr->stride * arr->reserved, arr->bkt);
	}
	arr->reserved = count;
	arr->data = new_data;
}

void
pk_arr_resize(struct pk_arr *arr, uint32_t count)
{
	pk_arr_reserve(arr, count);
	arr->next = count;
}

void
pk_arr_move_to_back(struct pk_arr *arr, uint32_t index)
{
	if (arr->reserved == 0) return;
	if (arr->next <= 1) return;
#ifdef PK_ARR_MOVE_IN_PLACE
	uint32_t i, ii;
	char *target = (char *)pk_new(arr->stride, arr->alignment, arr->bkt);
	char *buffer = (char *)arr->data;
	// copy bytes to temp buffer
	for (ii = 0, i = arr->stride * index; ii < arr->stride; ++ii, ++i) {
		target[ii] = buffer[i];
	}
	// shift everything forward
	// arr->stride = 8
	// arr->next = 2
	// index = 0
	//
	// for (i = 0; i < 8; ++i) {
	//   b[i] = b[i + 8]
	// }
	// b[00] = b[08]
	// b[01] = b[09]
	// ...
	// b[07] = b[15]
	for (i = arr->stride * index; i < (arr->stride * (arr->next - 1)); ++i) {
		buffer[i] = buffer[i + arr->stride];
	}
	// copy temp buffer back into arr
	// arr->stride = 8
	// arr->next = 2
	// index = 0
	//
	// for (ii = 0, i = 8; ii < 8; ++ii, ++i) {
	//   b[i] = t[ii]
	// }
	// b[08] = t[00]
	// b[09] = t[01]
	// ...
	// b[15] = t[07]
	for (ii = 0, i = arr->stride * (arr->next - 1); ii < arr->stride; ++ii, ++i) {
		buffer[i] = target[ii];
	}
	pk_delete(target, arr->stride, arr->bkt);
#else
	char *new_data = (char *)pk_new(arr->stride * arr->reserved, arr->alignment, arr->bkt);
	if (index > 0) {
		memcpy(new_data, arr->data, arr->stride * index);
	}
	memcpy(
		new_data + (arr->stride * (arr->next - 1)),
		((char *)arr->data) + (arr->stride * index),
		arr->stride);
	memcpy(
		new_data + (arr->stride * index),
		((char *)arr->data) + (arr->stride * (index + 1)),
		arr->stride * (arr->next - index - 1));
	pk_delete(arr->data, arr->stride * arr->reserved, arr->bkt);
	arr->data = (void *)new_data;
#endif
}

void
pk_arr_append(struct pk_arr *arr, void *data)
{
	if (arr->reserved == arr->next) {
		uint32_t new_count = PK_MAX(arr->reserved == 0 ? PK_ARR_INITIAL_COUNT : arr->reserved * PK_ARR_GROW_RATIO, arr->reserved + 1);
		void *new_data = pk_new(arr->stride * new_count, arr->alignment, arr->bkt);
		if (arr->data != NULL) {
			memcpy(new_data, arr->data, arr->stride * arr->reserved);
			pk_delete(arr->data, arr->stride * arr->reserved, arr->bkt);
		}
		arr->data = new_data;
		arr->reserved = new_count;
	}
	memcpy(((char *)arr->data) + (arr->stride * arr->next), data, arr->stride);
	arr->next += 1;
	return;
}

void
pk_arr_remove_at(struct pk_arr *arr, uint32_t index)
{
	if (arr->reserved == 0) return;
	if (index == arr->next - 1) {
		arr->next -=1;
		return;
	}
#ifdef PK_ARR_MOVE_IN_PLACE
	uint32_t i;
	char *buffer = (char *)arr->data;
	// shift everything forward
	// arr->stride = 8
	// arr->next = 3
	// index = 0
	//
	// for (i = 0; i < 16; ++i) {
	//   b[i] = b[i + 8]
	// }
	// b[00] = b[08]
	// b[01] = b[09]
	// ...
	// b[15] = b[23]
	for (i = arr->stride * index; i < arr->stride * arr->next; ++i) {
		buffer[i] = buffer[i + arr->stride];
	}
#else
	char *new_data = (char *)pk_new(arr->stride * arr->reserved, arr->alignment, arr->bkt);
	if (index > 0) {
		memcpy(new_data, arr->data, arr->stride * index);
	}
	memcpy(
		new_data + (arr->stride * index),
		((char *)arr->data) + (arr->stride * (index + 1)),
		arr->stride * (arr->next - index - 1));
	pk_delete(arr->data, arr->stride * arr->reserved, arr->bkt);
	arr->data = (void *)new_data;
#endif
	arr->next -= 1;
}

void
pk_arr_clone(struct pk_arr *lhs, struct pk_arr *rhs) {
	size_t sz;
	*rhs = *lhs;
	if (lhs->data == NULL) return;
	sz = lhs->stride * lhs->reserved;
	rhs->data = pk_new(sz, lhs->alignment, lhs->bkt);
	memcpy(rhs->data, lhs->data, sz);
}

void
pk_arr_swap(struct pk_arr *lhs, struct pk_arr *rhs)
{
	struct pk_arr tmp = *lhs;
	*lhs = *rhs;
	*rhs = tmp;
}

uint32_t
pk_arr_find_first_index(struct pk_arr *arr, void *user_data, pk_arr_item_compare *fn)
{
	uint32_t i;
	char *char_data = (char *)arr->data;
	for (i = 0; i < arr->next; ++i) {
		if (fn(user_data, char_data + (arr->stride * i))) return i;
	}
	return -1;
}

bool
pk_arr_iter_begin(struct pk_arr *arr, struct pk_iter *it) {
	it->data = nullptr;
	it->id.arr.i = 0;
	if (arr->next > 0 && arr->data != nullptr && arr->data != CAFE_BABE(void)) {
		it->data = arr->data;
		return true;
	}
	return false;
}

bool pk_arr_iter_end(struct pk_arr *arr, struct pk_iter *it) {
	it->data = nullptr;
	it->id.arr.i = 0;
	if (arr->next > 0 && arr->data != nullptr && arr->data != CAFE_BABE(void)) {
		it->id.arr.i = arr->next - 1;
		it->data = (void *)((char*)arr->data + (arr->stride * it->id.arr.i));
		return true;
	}
	return false;
}

bool
pk_arr_iter_increment(struct pk_arr *arr, struct pk_iter *it) {
	if (it->id.arr.i + 1 >= arr->next) {
		return false;
	}
	it->id.arr.i += 1;
	it->data = (void *)((char*)arr->data + (arr->stride * it->id.arr.i));
	return true;
}

bool
pk_arr_iter_decrement(struct pk_arr *arr, struct pk_iter *it) {
	if (it->id.arr.i == 0) {
		return false;
	}
	it->id.arr.i -= 1;
	it->data = (void *)((char*)arr->data + (arr->stride * it->id.arr.i));
	return true;
}

#endif /* PK_IMPL_ARR */
#ifndef PK_PK_STN_H
#define PK_PK_STN_H

#include <errno.h>
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <stdlib.h>

enum PK_STN_RES {
	PK_STN_RES_SUCCESS,
	PK_STN_RES_OVERFLOW,
	PK_STN_RES_UNDERFLOW,
	PK_STN_RES_INCONVERTIBLE
};

enum PK_STN_RES pk_stn_int64_t(int64_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_uint64_t(uint64_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_int32_t(int32_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_uint32_t(uint32_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_int16_t(int16_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_uint16_t(uint16_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_int8_t(int8_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_uint8_t(uint8_t *i, char const *s, char **pEnd, int base);
enum PK_STN_RES pk_stn_float(float *f, char const *s, char **pEnd);
enum PK_STN_RES pk_stn_double(double *d, char const *s, char **pEnd);

#if defined(__cplusplus)

template <typename T>
enum PK_STN_RES pk_stn(T *n, char const *s, char **pEnd, int base = 0)
{
	if constexpr(std::is_same<T, int64_t>::value) {
		return pk_stn_int64_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, uint64_t>::value) {
		return pk_stn_uint64_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, int32_t>::value) {
		return pk_stn_int32_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, uint32_t>::value) {
		return pk_stn_uint32_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, int16_t>::value) {
		return pk_stn_int16_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, uint16_t>::value) {
		return pk_stn_uint16_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, int8_t>::value) {
		return pk_stn_int8_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, uint8_t>::value) {
		return pk_stn_uint8_t(n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, bool>::value) {
		static_assert(sizeof(bool) == sizeof(uint8_t));
		static_assert(alignof(bool) == alignof(uint8_t));
		return pk_stn_uint8_t((uint8_t*)n, s, pEnd, base);
	}
	if constexpr(std::is_same<T, float>::value) {
		return pk_stn_float(n, s, pEnd);
	}
	if constexpr(std::is_same<T, double>::value) {
		return pk_stn_double(n, s, pEnd);
	}
	return (PK_STN_RES)-1;
}

#endif /* defined(__cplusplus) */

#endif /* PK_PK_STN_H */

#ifdef PK_IMPL_STN

enum PK_STN_RES
pk_stn_int64_t(int64_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	long long l;
	errno = 0;
	l = strtoll(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == LLONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_uint64_t(uint64_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	unsigned long long l;
	errno = 0;
	l = strtoull(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == ULLONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_int32_t(int32_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	long l;
	errno = 0;
	l = strtol(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == LONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_uint32_t(uint32_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	unsigned long l;
	errno = 0;
	l = strtoul(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == ULONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_int16_t(int16_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	long l;
	errno = 0;
	l = strtol(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == LONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_uint16_t(uint16_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	unsigned long l;
	errno = 0;
	l = strtoul(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == ULONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_int8_t(int8_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	long l;
	errno = 0;
	l = strtol(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == LONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_uint8_t(uint8_t *i, char const *s, char **pEnd, int base)
{
	char *end;
	unsigned long l;
	errno = 0;
	l = strtoul(s, &end, base);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE) {
		if (l == ULONG_MAX) return PK_STN_RES_OVERFLOW;
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*i = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_float(float *f, char const *s, char **pEnd)
{
	char *end;
	float l;
	errno = 0;
	l = strtof(s, &end);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE && l == HUGE_VALF) {
		return PK_STN_RES_OVERFLOW;
	}
	if (errno == ERANGE && l == -HUGE_VALF) {
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*f = l;
	return PK_STN_RES_SUCCESS;
}

enum PK_STN_RES
pk_stn_double(double *d, char const *s, char **pEnd)
{
	char *end;
	double l;
	errno = 0;
	l = strtod(s, &end);
	if (pEnd != nullptr) *pEnd = end;
	if (errno == ERANGE && l == HUGE_VAL) {
		return PK_STN_RES_OVERFLOW;
	}
	if (errno == ERANGE && l == -HUGE_VAL) {
		return PK_STN_RES_UNDERFLOW;
	}
	if (s == end) {
		return PK_STN_RES_INCONVERTIBLE;
	}
	*d = l;
	return PK_STN_RES_SUCCESS;
}

#endif /* PK_IMPL_STN */
#ifndef PK_PKTMR_H
#define PK_PKTMR_H

#include <time.h>

/* 2024-12-17 JCB
 * I have read that in more recent Linux kernels, _MONOTONIC and _REALTIME
 *  do not require syscalls, while all of the other calls can.
 *  In testing on my personal machine, this seems to hold true. Using
 *  CLOCK_PROCESS_CPUTIME_ID consistently elapsed thousands of nanoseconds,
 *  even with no work between sequential _start() and _stop() calls.
 *  Meanwhile, the same test with _MONOTONIC elapsed only tens of nanoseconds.
 */

/* struct pk_tmr */
struct pk_tmr {
	struct timespec b; // begin
	struct timespec e; // end
};

#ifndef PK_TMR_CLOCK
	#define PK_TMR_CLOCK CLOCK_MONOTONIC
#endif

#define pk_tmr_start(tmr) { clock_gettime(PK_TMR_CLOCK, &tmr.b); }
#define pk_tmr_stop(tmr) { clock_gettime(PK_TMR_CLOCK, &tmr.e); }
#define pk_tmr_duration_u64_nano(tmr)  ((((unsigned long long int)tmr.e.tv_sec * 1000000000llu) + tmr.e.tv_nsec) - (((unsigned long long int)tmr.b.tv_sec * 1000000000llu) + (unsigned long long int)tmr.b.tv_nsec))
#define pk_tmr_duration_dbl_nano(tmr)  ((1e+9 * tmr.e.tv_sec + tmr.e.tv_nsec) - (1e+9 * tmr.b.tv_sec + tmr.b.tv_nsec))
#define pk_tmr_duration_dbl_micro(tmr) ((1e+6 * tmr.e.tv_sec + 1e-3 * tmr.e.tv_nsec) - (1e+6 * tmr.b.tv_sec + 1e-3 * tmr.b.tv_nsec))
#define pk_tmr_duration_dbl_mili(tmr)  ((1e+3 * tmr.e.tv_sec + 1e-6 * tmr.e.tv_nsec) - (1e+3 * tmr.b.tv_sec + 1e-6 * tmr.b.tv_nsec))
#define pk_tmr_duration_dbl_scnd(tmr)  ((tmr.e.tv_sec + 1e-9 * tmr.e.tv_nsec) - (tmr.b.tv_sec + 1e-9 * tmr.b.tv_nsec))

#endif /* PK_PKTMR_H */
#ifndef PK_UUID_H
#define PK_UUID_H

#include "stddef.h"
#include <time.h>

struct pk_uuid {
	alignas(max_align_t) unsigned char uuid[16];
};

const struct pk_uuid pk_uuid_zed = { .uuid = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } };
const struct pk_uuid pk_uuid_max = { .uuid = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF } };

#define pk_uuid_printf_format PK_Q(%.2x%.2x%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x%.2x%.2x%.2x%.2x)
#define pk_uuid_printf_var(id) id.uuid[0], id.uuid[1], id.uuid[2], id.uuid[3], id.uuid[4], id.uuid[5], id.uuid[6], id.uuid[7], id.uuid[8], id.uuid[9], id.uuid[10], id.uuid[11], id.uuid[12], id.uuid[13], id.uuid[14], id.uuid[15]

void pk_uuid_init(time_t srand_seed);
void pk_uuid_teardown();

struct pk_uuid pk_uuid_new_v7();
bool pk_uuid_equals(struct pk_uuid lhs, struct pk_uuid rhs);
bool pk_uuid_parse(const char *s, struct pk_uuid *uuid);

#if defined(__cplusplus)
#include <ostream>
#include <iomanip>
std::ostream& operator<<(std::ostream &o, const struct pk_uuid& uuid);
std::istream& operator>>(std::istream &i, struct pk_uuid& uuid);
const char* operator>>(const char *s, struct pk_uuid& uuid);
struct pk_uuid& operator<<(struct pk_uuid& uuid, const char *s);
bool operator==(const pk_uuid &lhs, const pk_uuid &rhs);
bool operator!=(const pk_uuid &lhs, const pk_uuid &rhs);
#endif

#endif /* PK_UUID_H */

#ifdef PK_IMPL_UUID


#include <stdlib.h>
#include <stdint.h>

// TODO JCB - 2025-03-19
// This should have platform-specific defines
#ifndef PK_UUID_CLOCK
	#ifdef CLOCK_TAI
		#define PK_UUID_CLOCK CLOCK_TAI
	#else
		#define PK_UUID_CLOCK CLOCK_REALTIME
	#endif
#endif

void
pk_uuid_init(time_t srand_seed)
{
	// TODO 2025-03-19 - JCB
	// pk.h should NOT be setting srand.
	// Replace dependency on rand/srand with a sufficient rand() implementation.
	// I would prefer if generating a UUID did not advance a global random.
	// Consider creating a pkrand.h to resolve this.
	srand(srand_seed);
}

void
pk_uuid_teardown()
{
}

struct pk_uuid
pk_uuid_new_v7()
{
	const int n = 1;
	uint32_t r;
	// https://www.rfc-editor.org/rfc/rfc9562.html#name-uuid-version-7
	struct pk_uuid ret;
	struct timespec t;
	clock_gettime(PK_UUID_CLOCK, &t);
	uint32_t sec = (uint32_t)t.tv_sec;
	uint32_t nsec = (uint32_t)t.tv_nsec;
	// [000-047] (6 bytes) big-endian unix epoch
	// TODO test this on a big-endian machine, I don't think this is correct.
	// This `if` determines if we are big or little endian.
	// A return value of 1 says we are little endian, so swap the bits.
	if (*(char *)&n == 1) {
		ret.uuid[0] = (uint8_t)((sec  & 0xFF000000) >> 24);
		ret.uuid[1] = (uint8_t)((sec  & 0x00FF0000) >> 16);
		ret.uuid[2] = (uint8_t)((sec  & 0x0000FF00) >> 8);
		ret.uuid[3] = (uint8_t)((sec  & 0x000000FF) >> 0);
		ret.uuid[4] = (uint8_t)((nsec & 0x0000FF00) >> 8);
		ret.uuid[5] = (uint8_t)((nsec & 0x000000FF) >> 0);
	} else {
		ret.uuid[0] = (uint8_t)((sec  & 0xFF000000) >> 0);
		ret.uuid[1] = (uint8_t)((sec  & 0x00FF0000) >> 8);
		ret.uuid[2] = (uint8_t)((sec  & 0x0000FF00) >> 16);
		ret.uuid[3] = (uint8_t)((sec  & 0x000000FF) >> 24);
		ret.uuid[4] = (uint8_t)((nsec & 0xFF000000) >> 0);
		ret.uuid[5] = (uint8_t)((nsec & 0x00FF0000) >> 8);
	}
	// [052-127] random
	r = (uint32_t)rand();
	if (*(char *)&n == 1) {
		ret.uuid[8]  = (uint8_t)((r & 0xFF000000) >> 24);
		ret.uuid[9]  = (uint8_t)((r & 0x00FF0000) >> 16);
		ret.uuid[10] = (uint8_t)((r & 0x0000FF00) >> 8);
		ret.uuid[11] = (uint8_t)((r & 0x000000FF) >> 0);
	} else {
		ret.uuid[8]  = (uint8_t)((r & 0xFF000000) >> 0);
		ret.uuid[9]  = (uint8_t)((r & 0x00FF0000) >> 8);
		ret.uuid[10] = (uint8_t)((r & 0x0000FF00) >> 16);
		ret.uuid[11] = (uint8_t)((r & 0x000000FF) >> 24);
	}
	r = rand();
	if (*(char *)&n == 1) {
		ret.uuid[12] = (uint8_t)((r & 0xFF000000) >> 24);
		ret.uuid[13] = (uint8_t)((r & 0x00FF0000) >> 16);
		ret.uuid[14] = (uint8_t)((r & 0x0000FF00) >> 8);
		ret.uuid[15] = (uint8_t)((r & 0x000000FF) >> 0);
	} else {
		ret.uuid[12] = (uint8_t)((r & 0xFF000000) >> 0);
		ret.uuid[13] = (uint8_t)((r & 0x00FF0000) >> 8);
		ret.uuid[14] = (uint8_t)((r & 0x0000FF00) >> 16);
		ret.uuid[15] = (uint8_t)((r & 0x000000FF) >> 24);
	}
	ret.uuid[6]  = ret.uuid[9]  ^ ret.uuid[12];
	ret.uuid[7]  = ret.uuid[10] ^ ret.uuid[15];

	// [048-051] v7 nibble
	// version must be 0x7_
	// 0x70 is 0b01110000
	// 0x7F is 0b01111111
	ret.uuid[6] |= 0x70;
	ret.uuid[6] &= 0x7F;

	// [064-065] 2-bit variant field
	// variant must be 0b10
	// 0x80 is 0b10000000
	// 0xBF is 0b10111111
	ret.uuid[8] |= 0x80;
	ret.uuid[8] &= 0xBF;

	return ret;
}

bool pk_uuid_equals(struct pk_uuid lhs, struct pk_uuid rhs)
{
	int i;
	for (i = 0; i < 16; ++i) {
		if (lhs.uuid[i] != rhs.uuid[i]) return false;
	}
	return true;
}

bool pk_uuid_parse(const char *s, struct pk_uuid *uuid)
{
	// ffffffff-ffff-ffff-ffff-ffffffffffff
	// 0       8    13   18   23          35
	char c[3] = {'\0','\0','\0'};
	unsigned char k, kk;
	if (s == nullptr) goto err_out;
	for (k = 0, kk = 0; k < 36; k+=2, ++kk) {
		if (s[k] == '\0' || s[k+1] == '\0') goto err_out;
		if (k == 8 || k == 13 || k == 18 || k == 23) {
			if (s[k] != '-') goto err_out;
			k -= 1;
			kk -= 1;
			continue;
		}
		c[0] = s[k];
		c[1] = s[k+1];
		if (pk_stn_uint8_t(&uuid->uuid[kk], c, nullptr, 16) != PK_STN_RES_SUCCESS) {
			goto err_out;
		}
	}
	return true;
err_out:
	*uuid = pk_uuid_zed;
	return false;
}

#if defined(__cplusplus)
std::ostream&
operator<<(std::ostream &o, const struct pk_uuid& uuid)
{
	int i;
	std::ios_base::fmtflags orig_flags = o.flags();
	auto fill = o.fill();
	o << std::hex;
	for (i = 0; i < 4; ++i) {
		o << std::setw(2) << std::setfill('0');
		o << (uint16_t)uuid.uuid[i];
	}
	o << "-";
	for (i = 4; i < 6; ++i) {
		o << std::setw(2) << std::setfill('0');
		o << (uint16_t)uuid.uuid[i];
	}
	o << "-";
	for (i = 6; i < 8; ++i) {
		o << std::setw(2) << std::setfill('0');
		o << (uint16_t)uuid.uuid[i];
	}
	o << "-";
	for (i = 8; i < 10; ++i) {
		o << std::setw(2) << std::setfill('0');
		o << (uint16_t)uuid.uuid[i];
	}
	o << "-";
	for (i = 10; i < 16; ++i) {
		o << std::setw(2) << std::setfill('0');
		o << (uint16_t)uuid.uuid[i];
	}
	o.fill(fill);
	o.flags(orig_flags);
	return o;
}

std::istream&
operator>>(std::istream &i, struct pk_uuid& uuid)
{
	char u[36];
	i.read(u, 36);
	if (i.rdstate() & std::ios::failbit) {
		goto err_out;
	} else if (pk_uuid_parse(u, &uuid) == false) {
		goto err_out;
	}
	return i;
err_out:
	uuid = pk_uuid_zed;
	i.seekg(-36, std::ios_base::cur);
	i.setstate(std::ios::failbit);
	return i;
}

const char * operator>>(const char *s, struct pk_uuid& uuid)
{
	if (pk_uuid_parse(s, &uuid)) {
		return s+36;
	}
	return s;
}

struct pk_uuid& operator<<(struct pk_uuid& uuid, const char *s)
{
	pk_uuid_parse(s, &uuid);
	return uuid;
}

bool operator==(const pk_uuid &lhs, const pk_uuid &rhs) { return pk_uuid_equals(lhs, rhs); }

bool operator!=(const pk_uuid &lhs, const pk_uuid &rhs) { return !pk_uuid_equals(lhs, rhs); }

#endif

#endif
#ifndef PK_PKBKTARR_H
#define PK_PKBKTARR_H


#ifndef PK_BKT_ARR_ALL_UNUSED_VAL
	#define PK_BKT_ARR_ALL_UNUSED_VAL 0xFFFFFFFFFFFFFFFF
#endif
#define PK_BKT_ARR_HANDLE_B_MAX 0xFFFFFF
#define PK_BKT_ARR_HANDLE_I_MAX 64

typedef bool (pk_bkt_arr_compare_fn)(void *user_data, const void *user_obj_data, const void *arr_obj_data);
typedef void (pk_bkt_arr_iterate_fn)(void *user_data, void *arr_obj_data);

struct pk_bkt_arr_handle {
	unsigned int b : 24;
	unsigned int i : 8;
};

#if ! defined(__cplusplus)
#define pk_bkt_arr_handle_MAX ((struct pk_bkt_arr_handle){ .b = PK_BKT_ARR_HANDLE_B_MAX, .i = PK_BKT_ARR_HANDLE_I_MAX })
#else
#define pk_bkt_arr_handle_MAX (pk_bkt_arr_handle{ .b = PK_BKT_ARR_HANDLE_B_MAX, .i = PK_BKT_ARR_HANDLE_I_MAX })
constexpr struct pk_bkt_arr_handle pk_bkt_arr_handle_MAX_constexpr = pk_bkt_arr_handle_MAX;
inline constexpr bool
operator==(const pk_bkt_arr_handle &lhs, const pk_bkt_arr_handle &rhs)
{
	return lhs.b == rhs.b && lhs.i == rhs.i;
}
#endif

struct pk_bkt_arr {
	struct pk_membucket *bkt_buckets;
	struct pk_membucket *bkt_data;
	unsigned long long *idx_unused;
	void **bucketed_data;
	struct pk_bkt_arr_handle head_l;
	struct pk_bkt_arr_handle head_r;
	struct pk_bkt_arr_handle limits;
	unsigned int reserved_buckets;
	unsigned long stride;
	unsigned long alignment;
};

enum PK_BKT_ARR_HANDLE_VALIDATION : uint8_t {
	PK_BKT_ARR_HANDLE_VALIDATION_VALID                      = 0,
	PK_BKT_ARR_HANDLE_VALIDATION_BUCKET_INDEX_TOO_HIGH      = 1 << 0,
	PK_BKT_ARR_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH        = 2 << 1,
};

enum PK_BKT_ARR_HANDLE_VALIDATION pk_bkt_arr_handle_validate(struct pk_bkt_arr *bkt_arr, struct pk_bkt_arr_handle handle);

void pk_bkt_arr_init(struct pk_bkt_arr *bkt_arr, unsigned long stride, unsigned long alignment, struct pk_bkt_arr_handle limits, struct pk_membucket *bkt_buckets, struct pk_membucket *bkt_data);
void pk_bkt_arr_clear(struct pk_bkt_arr *bkt_arr);
void pk_bkt_arr_reserve(struct pk_bkt_arr *bkt_arr, size_t count);
struct pk_bkt_arr_handle pk_bkt_arr_find_first_handle(struct pk_bkt_arr *bkt_arr, pk_bkt_arr_compare_fn fn, void *user_data, const void *user_obj_data);
void pk_bkt_arr_iterate(struct pk_bkt_arr *bkt_arr, pk_bkt_arr_iterate_fn fn, void *user_data);
void pk_bkt_arr_teardown(struct pk_bkt_arr *bkt_arr);
struct pk_bkt_arr_handle pk_bkt_arr_new_handle(struct pk_bkt_arr *bkt_arr);
void pk_bkt_arr_free_handle(struct pk_bkt_arr *bkt_arr, struct pk_bkt_arr_handle handle);
int pk_bkt_arr_handle_compare(struct pk_bkt_arr_handle lhs, struct pk_bkt_arr_handle rhs);
struct pk_bkt_arr_handle pk_bkt_arr_handle_increment(struct pk_bkt_arr *arr, struct pk_bkt_arr_handle h);
struct pk_bkt_arr_handle pk_bkt_arr_handle_decrement(struct pk_bkt_arr *arr, struct pk_bkt_arr_handle h);
bool pk_bkt_arr_iter_begin(struct pk_bkt_arr *arr, struct pk_iter *it);
bool pk_bkt_arr_iter_end(struct pk_bkt_arr *arr, struct pk_iter *it);
bool pk_bkt_arr_iter_increment(struct pk_bkt_arr *arr, struct pk_iter *it);
bool pk_bkt_arr_iter_decrement(struct pk_bkt_arr *arr, struct pk_iter *it);

#if defined (__cplusplus)
#include <assert.h>
template<typename T>
struct pk_bkt_arr_t : public pk_bkt_arr {
	pk_bkt_arr_t() = default;
	pk_bkt_arr_t(struct pk_bkt_arr_handle limits, struct pk_membucket *bkt_buckets, struct pk_membucket *bkt_data);
	~pk_bkt_arr_t() = default;
	T &operator[](struct pk_bkt_arr_handle);
	using FN_Iter = pk_tmpln_1<void, T*, void*>;
	using FN_Find = pk_tmpln_2<bool, const T*, const T*, const void*, const void*>;
};
template<typename T>
pk_bkt_arr_t<T>::pk_bkt_arr_t(struct pk_bkt_arr_handle limits, struct pk_membucket *bkt_buckets, struct pk_membucket *bkt_data) {
	pk_bkt_arr_init(this, sizeof(T), alignof(T), limits, bkt_buckets, bkt_data);
}
template<typename T>
T &pk_bkt_arr_t<T>::operator[](struct pk_bkt_arr_handle handle) {
	assert(this->idx_unused != nullptr);
	assert(this->bucketed_data != nullptr);
	assert(handle.b <= this->limits.b);
	assert(handle.i <= this->limits.i);
	assert(handle.b != this->head_r.b || handle.i <= this->head_r.i);
	T** two_star_programmer = reinterpret_cast<T**>(this->bucketed_data);
	return two_star_programmer[handle.b][handle.i];
}
#endif

#endif /* PK_PKBKTARR_H */
#ifdef PK_IMPL_BKTARR

#include <assert.h>
#include <string.h>

enum PK_BKT_ARR_HANDLE_VALIDATION pk_bkt_arr_handle_validate(struct pk_bkt_arr *bkt_arr, struct pk_bkt_arr_handle handle) {
	assert(bkt_arr != NULL);
	uint8_t ret = 0;
	if (handle.b >= bkt_arr->reserved_buckets || handle.b >= bkt_arr->limits.b) {
		ret |= PK_BKT_ARR_HANDLE_VALIDATION_BUCKET_INDEX_TOO_HIGH;
	}
	if (handle.i >= bkt_arr->limits.i) {
		ret |= PK_BKT_ARR_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH;
	}
	if (handle.b == bkt_arr->head_r.b && handle.i > bkt_arr->head_r.i) {
		ret |= PK_BKT_ARR_HANDLE_VALIDATION_ITEM_INDEX_TOO_HIGH;
	}
	return (enum PK_BKT_ARR_HANDLE_VALIDATION)ret;
}

void pk_bkt_arr_init(struct pk_bkt_arr *bkt_arr, unsigned long stride, unsigned long alignment, struct pk_bkt_arr_handle limits, struct pk_membucket *bkt_buckets, struct pk_membucket *bkt_data)
{
	assert(limits.b <= PK_BKT_ARR_HANDLE_B_MAX);
	assert(limits.i <= PK_BKT_ARR_HANDLE_I_MAX);
	assert(bkt_buckets != nullptr);
	assert(bkt_data != nullptr);
	assert(bkt_arr != nullptr);
	memset(bkt_arr, 0, sizeof(struct pk_bkt_arr));
	bkt_arr->bkt_buckets = bkt_buckets;
	bkt_arr->bkt_data = bkt_data;
	bkt_arr->head_l.b = 0ul;
	bkt_arr->head_l.i = 0ul;
	bkt_arr->head_r.b = 0ul;
	bkt_arr->head_r.i = 0ul;
	bkt_arr->limits = limits;
	bkt_arr->reserved_buckets = 1;
	bkt_arr->stride = stride;
	bkt_arr->alignment = alignment;
	bkt_arr->idx_unused = (unsigned long long *)pk_new_bkt(sizeof(unsigned long long), alignof(unsigned long long), bkt_buckets);
	bkt_arr->idx_unused[0] = PK_BKT_ARR_ALL_UNUSED_VAL;
	bkt_arr->bucketed_data = (void **)pk_new_bkt(sizeof(void *), alignof(void *), bkt_buckets);
	bkt_arr->bucketed_data[0] = pk_new_bkt(stride * limits.i, alignment, bkt_data);
}

void pk_bkt_arr_clear(struct pk_bkt_arr *bkt_arr) {
	unsigned int b;
	bkt_arr->head_l.b = 0;
	bkt_arr->head_l.i = 0;
	bkt_arr->head_r.b = 0;
	bkt_arr->head_r.i = 0;
	for (b = 0; b < bkt_arr->reserved_buckets; ++b) {
		bkt_arr->idx_unused[b] = PK_BKT_ARR_ALL_UNUSED_VAL;
	}
}

void pk_bkt_arr_reserve(struct pk_bkt_arr *bkt_arr, size_t count) {
	size_t bucket_count = count / bkt_arr->limits.i;
	if (bkt_arr->reserved_buckets >= bucket_count) return;
	unsigned long long *new_idx_unused = (unsigned long long *)pk_new_bkt(sizeof(unsigned long long) * bucket_count, alignof(uint64_t), bkt_arr->bkt_buckets);
	void **new_bucketed_data = (void **)pk_new_bkt(sizeof(void *) * bucket_count, alignof(void *), bkt_arr->bkt_buckets);
	if (bkt_arr->reserved_buckets > 0) {
		memcpy(new_idx_unused, bkt_arr->idx_unused, sizeof(unsigned long long) * bkt_arr->reserved_buckets);
		memcpy(new_bucketed_data, bkt_arr->bucketed_data, sizeof(void *) * bkt_arr->reserved_buckets);
		pk_delete_bkt(bkt_arr->bucketed_data, sizeof(void *) * bkt_arr->reserved_buckets, bkt_arr->bkt_buckets);
		pk_delete_bkt(bkt_arr->idx_unused, sizeof(unsigned long long) * bkt_arr->reserved_buckets, bkt_arr->bkt_buckets);
	}
	for (size_t i = bkt_arr->reserved_buckets; i < bucket_count; ++i) {
		new_idx_unused[i] = PK_BKT_ARR_ALL_UNUSED_VAL;
		new_bucketed_data[i] = pk_new_bkt(bkt_arr->stride * bkt_arr->limits.i, bkt_arr->alignment, bkt_arr->bkt_data);
	}
	bkt_arr->idx_unused = new_idx_unused;
	bkt_arr->bucketed_data = new_bucketed_data;
	bkt_arr->reserved_buckets = bucket_count;
}

struct pk_bkt_arr_handle pk_bkt_arr_find_first_handle(struct pk_bkt_arr *bkt_arr, pk_bkt_arr_compare_fn fn, void *user_data, const void *user_obj_data) {
	assert(bkt_arr != NULL);
	assert(fn != NULL);
	struct pk_bkt_arr_handle ret;
	unsigned int b, i, ii;
	ret.b = PK_BKT_ARR_HANDLE_B_MAX;
	ret.i = PK_BKT_ARR_HANDLE_I_MAX;
	for (b = 0; b < bkt_arr->reserved_buckets; ++b) {
		char *arr = ((char**)(bkt_arr->bucketed_data))[b];
		ii = b == bkt_arr->reserved_buckets-1 ? bkt_arr->head_r.i : bkt_arr->limits.i;
		for (i = 0; i < ii; ++i) {
			if (PK_HAS_FLAG(bkt_arr->idx_unused[b], 1ull << i)) {
				continue;
			}
			if (fn(user_data, user_obj_data, arr+(bkt_arr->stride * i))) {
				ret.b = b;
				ret.i = i;
				return ret;
			}
		}
	}
	return ret;
}

void pk_bkt_arr_iterate(struct pk_bkt_arr *bkt_arr, pk_bkt_arr_iterate_fn fn, void *user_data) {
	assert(bkt_arr != NULL);
	assert(fn != NULL);
	unsigned int b, i, ii;
	for (b = 0; b < bkt_arr->reserved_buckets; ++b) {
		char *arr = ((char**)(bkt_arr->bucketed_data))[b];
		ii = b == bkt_arr->head_r.b ? bkt_arr->head_r.i : bkt_arr->limits.i;
		for (i = 0; i < ii; ++i) {
			if (PK_HAS_FLAG(bkt_arr->idx_unused[b], 1ull << i)) {
				continue;
			}
			fn(user_data, arr+(bkt_arr->stride * i));
		}
	}
}

void pk_bkt_arr_teardown(struct pk_bkt_arr *bkt_arr)
{
	int b;
	size_t sz = bkt_arr->limits.i * bkt_arr->stride;
	if (bkt_arr->idx_unused == nullptr && bkt_arr->bucketed_data == nullptr) return;
	for (b = bkt_arr->reserved_buckets - 1; b > -1; --b) {
		pk_delete_bkt(bkt_arr->bucketed_data[b], sz, bkt_arr->bkt_data);
	}
	pk_delete_bkt((void *)bkt_arr->idx_unused, sizeof(unsigned long long) * (bkt_arr->reserved_buckets), bkt_arr->bkt_buckets);
	pk_delete_bkt((void *)bkt_arr->bucketed_data, sizeof(void *) * (bkt_arr->reserved_buckets), bkt_arr->bkt_buckets);
	memset(bkt_arr, 0, sizeof(struct pk_bkt_arr));
	bkt_arr->bkt_buckets = NULL;
	bkt_arr->bkt_data = NULL;
	bkt_arr->idx_unused = NULL;
	bkt_arr->bucketed_data = NULL;
}

struct pk_bkt_arr_handle pk_bkt_arr_new_handle(struct pk_bkt_arr *bkt_arr)
{
	struct pk_bkt_arr_handle ret;
	unsigned int b, i, ii;
	assert(bkt_arr != nullptr);
	// if we have an existing open slot
	if (pk_bkt_arr_handle_compare(bkt_arr->head_l, bkt_arr->head_r) != 0) {
		ret = bkt_arr->head_l;
		for (b = bkt_arr->head_l.b; b < bkt_arr->reserved_buckets; ++b) {
			if (bkt_arr->idx_unused[b] == 0ull) continue;
			// I feel like you could do a binary search here, but for 64 elements is it worth it?
			i = bkt_arr->head_l.b == b ? bkt_arr->head_l.i + 1 : 0;
			ii = bkt_arr->head_r.b == b ? bkt_arr->head_r.i : PK_MIN(64, bkt_arr->limits.i);
			for (; i < ii; ++i) {
				if (bkt_arr->idx_unused[b] & (1ull << i)) {
					bkt_arr->head_l.b = b;
					bkt_arr->head_l.i = i;
					goto done;
				}
			}
		}
		bkt_arr->head_l = bkt_arr->head_r;
		goto done;
	}
	if (pk_bkt_arr_handle_compare(pk_bkt_arr_handle_increment(bkt_arr, bkt_arr->head_l), bkt_arr->head_l) == 0 && bkt_arr->reserved_buckets == bkt_arr->limits.b && bkt_arr->idx_unused[bkt_arr->head_r.b] == 0) {
		PK_LOGV_ERR("[pk_bkt_arr_new_handle] Exceeded bucket limits!: b:%u i:%u\n", bkt_arr->limits.b, bkt_arr->limits.i);
		exit(1);
	}
	if (bkt_arr->head_r.b == bkt_arr->reserved_buckets && bkt_arr->head_r.i == 0) {
		bkt_arr->reserved_buckets += 1;

		unsigned long long *new_idx_unused = (unsigned long long *)pk_new_bkt(sizeof(unsigned long long) * bkt_arr->reserved_buckets, alignof(unsigned long long), bkt_arr->bkt_buckets);
		void **new_data_ptrs = (void **)pk_new_bkt(sizeof(void *) * bkt_arr->reserved_buckets, alignof(void *), bkt_arr->bkt_buckets);

		for (b = 0; b < bkt_arr->reserved_buckets - 1; ++b) {
			new_idx_unused[b] = bkt_arr->idx_unused[b];
			new_data_ptrs[b] = bkt_arr->bucketed_data[b];
		}
		new_idx_unused[bkt_arr->reserved_buckets - 1] = PK_BKT_ARR_ALL_UNUSED_VAL;
		new_data_ptrs[bkt_arr->reserved_buckets - 1] = pk_new_bkt(bkt_arr->stride * bkt_arr->limits.i, bkt_arr->alignment, bkt_arr->bkt_data);

		pk_delete_bkt((void *)bkt_arr->idx_unused, sizeof(unsigned long long) * (bkt_arr->reserved_buckets - 1), bkt_arr->bkt_buckets);
		pk_delete_bkt((void *)bkt_arr->bucketed_data, sizeof(void *) * (bkt_arr->reserved_buckets - 1), bkt_arr->bkt_buckets);
		bkt_arr->idx_unused = new_idx_unused;
		bkt_arr->bucketed_data = new_data_ptrs;
	}
	ret = bkt_arr->head_r;
	bkt_arr->head_r = pk_bkt_arr_handle_increment(bkt_arr, bkt_arr->head_r);
	bkt_arr->head_l = pk_bkt_arr_handle_increment(bkt_arr, bkt_arr->head_l);
done:
	bkt_arr->idx_unused[ret.b] &= ~(1ull << ret.i);
	return ret;
}

void pk_bkt_arr_free_handle(struct pk_bkt_arr *bkt_arr, struct pk_bkt_arr_handle handle)
{
	assert(bkt_arr != nullptr);
	assert(pk_bkt_arr_handle_validate(bkt_arr, handle) == PK_BKT_ARR_HANDLE_VALIDATION_VALID);
	bkt_arr->idx_unused[handle.b] |= (1ull << handle.i);
	if (handle.b < bkt_arr->head_l.b || (handle.b == bkt_arr->head_l.b && handle.i < bkt_arr->head_l.i)) {
		bkt_arr->head_l = handle;
		return;
	}
}

int pk_bkt_arr_handle_compare(struct pk_bkt_arr_handle lhs, struct pk_bkt_arr_handle rhs)
{
	if (lhs.b == rhs.b && lhs.i == rhs.i) return 0;
	if (lhs.b == rhs.b) return (int)rhs.i - (int)lhs.i;
	return (int)rhs.b - (int)lhs.b;
}

struct pk_bkt_arr_handle pk_bkt_arr_handle_increment(struct pk_bkt_arr *arr, struct pk_bkt_arr_handle h)
{
	h.i += 1;
	if (arr->limits.i == h.i) {
		if (h.b + 1 < arr->limits.b) {
			h.b += 1;
			h.i = 0;
		} else {
			h.i -= 1;
		}
	}
	return h;
}

struct pk_bkt_arr_handle pk_bkt_arr_handle_decrement(struct pk_bkt_arr *arr, struct pk_bkt_arr_handle h)
{
	if (h.i == 0) {
		if (h.b != 0) {
			h.b -= 1;
			h.i = arr->limits.i;
		} else {
			return h;
		}
	}
	h.i -= 1;
	return h;
}

bool pk_bkt_arr_iter_begin(struct pk_bkt_arr *arr, struct pk_iter *it) {
	it->data = nullptr;
	it->id.bkt.b = 0;
	it->id.bkt.i = 0;
	if (arr->head_l.b == 0 && arr->head_l.i == 0 && (arr->head_l.b != arr->head_r.b || arr->head_l.i != arr->head_r.i))  {
		return pk_bkt_arr_iter_increment(arr, it);
	}
	if ((arr->idx_unused[it->id.bkt.b] & (1ull << it->id.bkt.i)) != 0) return false;
	it->data = (char*)(arr->bucketed_data[it->id.bkt.b]) + (arr->stride * it->id.bkt.i);
	return true;
}

bool pk_bkt_arr_iter_end(struct pk_bkt_arr *arr, struct pk_iter *it) {
	it->data = nullptr;
	it->id.bkt.b = 0;
	it->id.bkt.i = 0;
	if (arr->head_r.b == 0 && arr->head_r.i == 0) return false;
	do {
		struct pk_bkt_arr_handle handle = arr->head_r;
		for (;;) {
			if ((arr->idx_unused[handle.b] & (1ull << handle.i)) == 0) break;
			if (handle.b == 0 && handle.i == 0) return false;
			handle = pk_bkt_arr_handle_decrement(arr, handle);
		}
		it->id.bkt.b = handle.b;
		it->id.bkt.i = handle.i;
		break;
	} while (true);
	if (arr->bucketed_data != nullptr && arr->bucketed_data[it->id.bkt.b] != nullptr) {
		it->data = (char*)(arr->bucketed_data[it->id.bkt.b]) + (arr->stride * it->id.bkt.i);
		return true;
	}
	return false;
}

bool pk_bkt_arr_iter_increment(struct pk_bkt_arr *arr, struct pk_iter *it) {
	struct pk_bkt_arr_handle handle = {
		.b = it->id.bkt.b,
		.i = it->id.bkt.i,
	};
	if (it->id.bkt.b == arr->limits.b-1 && it->id.bkt.i == arr->limits.i-1) return false;
	for (;;) {
		handle = pk_bkt_arr_handle_increment(arr, handle);
		if (handle.b >= arr->reserved_buckets) return false;
		if ((arr->idx_unused[handle.b] & (1ull << handle.i)) == 0) break;
	}
	it->id.bkt.b = handle.b;
	it->id.bkt.i = handle.i;
	if ((arr->idx_unused[it->id.bkt.b] & (1ull << it->id.bkt.i)) != 0) return false;
	it->data = (char*)(arr->bucketed_data[it->id.bkt.b]) + (arr->stride * it->id.bkt.i);
	return true;
}

bool pk_bkt_arr_iter_decrement(struct pk_bkt_arr *arr, struct pk_iter *it) {
	struct pk_bkt_arr_handle handle = {
		.b = it->id.bkt.b,
		.i = it->id.bkt.i,
	};
	for (;;) {
		handle = pk_bkt_arr_handle_decrement(arr, handle);
		if ((arr->idx_unused[handle.b] & (1ull << handle.i)) == 0) break;
		if (handle.b == 0 && handle.i == 0) break;
	}
	if (it->id.bkt.b == handle.b && it->id.bkt.i == handle.i) return false;
	it->id.bkt.b = handle.b;
	it->id.bkt.i = handle.i;
	if ((arr->idx_unused[it->id.bkt.b] & (1ull << it->id.bkt.i)) != 0) return false;
	it->data = ((char*)(arr->bucketed_data[it->id.bkt.b])) + (arr->stride * it->id.bkt.i);
	return true;
}

#endif /* PK_IMPL_BKTARR */
#ifndef PK_PKFUNCINSTR_H
#define PK_PKFUNCINSTR_H


#include <stdio.h>

struct pk_funcinstr;
struct pk_funcinstr {
	void *fn;
	struct pk_tmr tmr;
	struct pk_funcinstr *parent;
	struct pk_funcinstr *first_child;
	struct pk_funcinstr **children;
	size_t n_children;
	size_t r_children;
};

void pk_funcinstr_init();
void pk_funcinstr_set_ouputs(FILE *out, FILE *err);
void pk_funcinstr_teardown();

#if defined(__cplusplus)
extern "C" {
#endif

#if defined(__clang__)
// clang
#elif defined(__GNUC__) || defined(__GNUG__)

#ifndef __USE_GNU
 #define __USE_GNU
#endif
#if defined(__cplusplus)
#include <cxxabi.h>
#endif
#include <dlfcn.h>
#include <link.h>
#include <string.h>


void __cyg_profile_func_enter(void* this_fn, void* call_site);
void __cyg_profile_func_exit(void* this_fn, void* call_site);

#else
// other
#endif

#if defined(__cplusplus)
} // extern "C"
#endif

#endif /* PK_PKFUNCINSTR_H */
#if defined(PK_IMPL_FUNCINSTR)

#include <assert.h>
#include <stdio.h>
#include <threads.h>
#include <string.h>

#define PK_FUNCINSTR_CHILDREN_START_COUNT 8
#define PK_FUNCINSTR_CHILDREN_GROW_RATIO 2.0
#define PK_FUNCINSTR_BKT_START_COUNT 64
#define PK_FUNCINSTR_BKT_GROW_RATIO 2.0
#define PK_FUNCINSTR_BKT_DATA_COUNT 0xFFFF
struct pk_funcinstr_bkt {
	uint16_t used_count;
	uint8_t guard_enter;
	uint8_t guard_exit;
	struct timespec reset_time;
	struct pk_funcinstr data[PK_FUNCINSTR_BKT_DATA_COUNT+1];
};
struct pk_funcinstr_mstr {
	mtx_t mtx;
	FILE *out;
	FILE *err;
	struct timespec reset_time;
	struct pk_funcinstr_bkt **buckets;
	size_t r_buckets;
	size_t n_buckets;
};
// if NULL, get a new bucket (or alloc if full). if !NULL, existing thread
static thread_local struct pk_funcinstr_bkt *pk_funcinstr_thrd_bkt = NULL;
// last function call (should be NULL or parent of current)
static thread_local struct pk_funcinstr *pk_funcinstr_thrd_instr = NULL;
static struct pk_funcinstr_mstr thrd_mstr;

__attribute__((no_instrument_function))
void pk_funcinstr_init() {
	assert(thrd_mstr.out == NULL);
	assert(thrd_mstr.err == NULL);
	assert(thrd_mstr.reset_time.tv_sec == 0);
	assert(thrd_mstr.reset_time.tv_nsec == 0);
	assert(thrd_mstr.buckets == NULL);
	assert(thrd_mstr.r_buckets == 0);
	assert(thrd_mstr.n_buckets == 0);
	mtx_init(&thrd_mstr.mtx, mtx_plain);
	thrd_mstr.out = stdout;
	thrd_mstr.err = stderr;
	thrd_mstr.r_buckets = PK_FUNCINSTR_BKT_START_COUNT;
	thrd_mstr.buckets = (struct pk_funcinstr_bkt**)aligned_alloc(alignof(struct pk_funcinstr_bkt *), (sizeof(struct pk_funcinstr_bkt *) * PK_FUNCINSTR_BKT_START_COUNT));
	clock_gettime(PK_TMR_CLOCK, &thrd_mstr.reset_time);
}

__attribute__((no_instrument_function))
void pk_funcinstr_set_ouputs(FILE *out, FILE *err) {
	thrd_mstr.out = out;
	thrd_mstr.err = err;
}

__attribute__((no_instrument_function))
void pk_funcinstr_write(FILE *f) {
	int64_t i, k, s;
	struct pk_funcinstr_bkt *bkt = nullptr;
	struct pk_funcinstr *instr = nullptr;
	struct pk_tmr fake_tmr;
	Dl_info info;
	mtx_lock(&thrd_mstr.mtx);
	fake_tmr.b = thrd_mstr.reset_time;
	fprintf(f, "[");
	for (i = 0; i < (int64_t)thrd_mstr.n_buckets; ++i) {
		bkt = thrd_mstr.buckets[i];
		for (k = 0; k < (int64_t)bkt->used_count; ++k) {
			instr = &bkt->data[k];
			for (s = 0; s < 2; ++s) {
				if (i == 0 && k == 0 && s == 0) {
					fprintf(f, "{");
				} else {
					fprintf(f, ",{");
				}
				if (dladdr(instr->fn, &info) != 0) {
					fprintf(f, "\"name\": \"%s\",", info.dli_sname);
				} else {
					fprintf(f, "\"name\": \"unknown\",");
				}
				fprintf(f, "\"cat\": \"%s\",", "funcinstr");
				if (s == 0) {
					fake_tmr.e = instr->tmr.b;
					fprintf(f, "\"ph\": \"%c\",", 'B');
				} else {
					fake_tmr.e = instr->tmr.e;
					fprintf(f, "\"ph\": \"%c\",", 'E');
				}
				fprintf(f, "\"ts\": %lli,", pk_tmr_duration_u64_nano(fake_tmr));
				fprintf(f, "\"pid\": %i,", 69);
				fprintf(f, "\"tid\": %ld", thrd_current());
				fprintf(f, "}");
			}
		}
	}
	fprintf(f, "]");
	mtx_unlock(&thrd_mstr.mtx);
}

__attribute__((no_instrument_function))
void pk_funcinstr_teardown() {
	int64_t i, k;
	mtx_lock(&thrd_mstr.mtx);
	for (i = ((int64_t)thrd_mstr.n_buckets)-1; i > -1; --i) {
		struct pk_funcinstr_bkt *bkt = thrd_mstr.buckets[i];
		for (k = ((int64_t)bkt->used_count)-1; k > -1; --k) {
			free(bkt->data[k].children);
		}
	}
	free(thrd_mstr.buckets);
	thrd_mstr.out = NULL;
	thrd_mstr.err = NULL;
	thrd_mstr.reset_time.tv_sec = 0;
	thrd_mstr.reset_time.tv_nsec = 0;
	thrd_mstr.buckets = NULL;
	thrd_mstr.r_buckets = 0;
	thrd_mstr.n_buckets = 0;
	mtx_unlock(&thrd_mstr.mtx);
	mtx_destroy(&thrd_mstr.mtx);
}

#if defined(__clang__)
// TODO clang XRay
//  Come up with pk macros since XRay requires attributes to instrument?
#elif defined(__GNUC__) || defined(__GNUG__)

__attribute__((no_instrument_function))
bool pk_funcinstr_detect_not_initialized() {
	if (thrd_mstr.buckets == NULL) return true;
	if (thrd_mstr.r_buckets == 0) return true;
	return false;
}

__attribute__((no_instrument_function))
void pk_funcinstr_detect_and_handle_reset() {
	bool should_hard_reset = false;
	bool should_reset = pk_funcinstr_thrd_bkt == NULL;
	if (pk_funcinstr_thrd_bkt != NULL) {
		should_reset = pk_funcinstr_thrd_bkt->used_count == PK_FUNCINSTR_BKT_DATA_COUNT;
		should_hard_reset = thrd_mstr.reset_time.tv_sec > pk_funcinstr_thrd_bkt->reset_time.tv_sec;
		should_hard_reset = should_hard_reset || (thrd_mstr.reset_time.tv_sec == pk_funcinstr_thrd_bkt->reset_time.tv_sec && thrd_mstr.reset_time.tv_nsec > pk_funcinstr_thrd_bkt->reset_time.tv_nsec);
	}
	if (should_hard_reset) {
		if (pk_funcinstr_thrd_bkt != NULL) free(pk_funcinstr_thrd_bkt);
		pk_funcinstr_thrd_bkt = NULL;
		pk_funcinstr_thrd_instr = NULL;
		should_reset = true;
	}
	if (should_reset) {
		if (thrd_mstr.n_buckets == thrd_mstr.r_buckets) {
			mtx_lock(&thrd_mstr.mtx);
			thrd_mstr.r_buckets *= PK_FUNCINSTR_BKT_GROW_RATIO;
			struct pk_funcinstr_bkt **buckets = (struct pk_funcinstr_bkt**)aligned_alloc(alignof(void *), sizeof(void *) * thrd_mstr.r_buckets);
			memcpy(buckets, thrd_mstr.buckets, sizeof(void *) * (thrd_mstr.n_buckets));
			free(thrd_mstr.buckets);
			thrd_mstr.buckets = buckets;
			mtx_unlock(&thrd_mstr.mtx);
		}
		struct pk_funcinstr_bkt *bkt = (struct pk_funcinstr_bkt *)aligned_alloc(alignof(struct pk_funcinstr_bkt), sizeof(struct pk_funcinstr_bkt));
		bkt->used_count = 0;
		bkt->guard_enter = 0;
		bkt->guard_exit = 0;
		bkt->reset_time.tv_sec = 0;
		bkt->reset_time.tv_nsec = 0;
		if (pk_funcinstr_thrd_bkt != NULL) {
			pk_funcinstr_thrd_bkt->guard_enter = 0;
			pk_funcinstr_thrd_bkt->guard_exit = 0;
		}
		pk_funcinstr_thrd_bkt = bkt;
		mtx_lock(&thrd_mstr.mtx);
		thrd_mstr.buckets[thrd_mstr.n_buckets++] = bkt;
		mtx_unlock(&thrd_mstr.mtx);
		clock_gettime(PK_TMR_CLOCK, &pk_funcinstr_thrd_bkt->reset_time);
	}
}

__attribute__((no_instrument_function))
bool pk_funcinstr_should_early_exit() {
	if (pk_funcinstr_thrd_bkt->guard_enter != 0) return true;
	if (pk_funcinstr_thrd_bkt->guard_exit != 0) return true;
	return false;
}

__attribute__((no_instrument_function))
struct pk_funcinstr *pk_funcinstr_create_funcinstr(void *this_fn) {
	struct pk_funcinstr *funcinstr = &pk_funcinstr_thrd_bkt->data[pk_funcinstr_thrd_bkt->used_count];
	pk_funcinstr_thrd_bkt->used_count++;
	funcinstr->fn = this_fn;
	pk_tmr_start(funcinstr->tmr);
	funcinstr->parent = pk_funcinstr_thrd_instr;
	funcinstr->first_child = NULL;
	funcinstr->children = NULL;
	funcinstr->n_children = 0;
	funcinstr->r_children = 0;

	if (pk_funcinstr_thrd_instr != NULL) {
		if (pk_funcinstr_thrd_instr->first_child == NULL) {
			// avoid an malloc if n_children will only == 1
			pk_funcinstr_thrd_instr->first_child = funcinstr;
		} else {
			if (pk_funcinstr_thrd_instr->n_children == pk_funcinstr_thrd_instr->r_children) {
				if (pk_funcinstr_thrd_instr->r_children == 0) {
					pk_funcinstr_thrd_instr->r_children = PK_FUNCINSTR_CHILDREN_START_COUNT;
				} else {
					pk_funcinstr_thrd_instr->r_children *= PK_FUNCINSTR_CHILDREN_GROW_RATIO;
				}
				struct pk_funcinstr **children = (struct pk_funcinstr **)aligned_alloc(alignof(void *), sizeof(void *) * pk_funcinstr_thrd_instr->r_children);
				if (pk_funcinstr_thrd_instr->children != NULL) {
					memcpy(children, pk_funcinstr_thrd_instr->children, sizeof(void *) * pk_funcinstr_thrd_instr->n_children);
					free(pk_funcinstr_thrd_instr->children);
				}
				pk_funcinstr_thrd_instr->children = children;
				if (pk_funcinstr_thrd_instr->n_children == 0) {
					pk_funcinstr_thrd_instr->children[0] = pk_funcinstr_thrd_instr->first_child;
					pk_funcinstr_thrd_instr->n_children++;
				}
			}
			pk_funcinstr_thrd_instr->children[pk_funcinstr_thrd_instr->n_children] = funcinstr;
			pk_funcinstr_thrd_instr->n_children++;
		}
	}
	return funcinstr;
}

__attribute__((no_instrument_function))
void __cyg_profile_func_enter(void* this_fn, void* call_site) {
	(void)call_site;
	if (pk_funcinstr_detect_not_initialized()) return;
	pk_funcinstr_detect_and_handle_reset();
	if (pk_funcinstr_should_early_exit()) return;
	pk_funcinstr_thrd_bkt->guard_enter++;

	pk_funcinstr_thrd_instr = pk_funcinstr_create_funcinstr(this_fn);

	pk_funcinstr_thrd_bkt->guard_enter = 0;
}

__attribute__((no_instrument_function))
void __cyg_profile_func_exit(void* this_fn, void* call_site) {
	(void)call_site;
	if (pk_funcinstr_detect_not_initialized()) return;
	pk_funcinstr_detect_and_handle_reset();
	if (pk_funcinstr_should_early_exit()) return;
	if (pk_funcinstr_thrd_instr == NULL) return; // exit called before enter?
	pk_funcinstr_thrd_bkt->guard_exit++;

#ifdef PK_FUNCINSTR_PRINT
	Dl_info info;
#endif /* PK_FUNCINSTR_PRINT */

	if (this_fn != pk_funcinstr_thrd_instr->fn) {
		int64_t i = (int64_t)pk_funcinstr_thrd_bkt->used_count - 1;
		for (; i > -1; --i) {
			if (pk_funcinstr_thrd_bkt->data[i].fn == this_fn) {
				if (pk_funcinstr_thrd_bkt->data[i].tmr.e.tv_sec == 0) {
					pk_funcinstr_thrd_instr = &pk_funcinstr_thrd_bkt->data[i];
					break;
				}
			}
		}
	}
	if (this_fn != pk_funcinstr_thrd_instr->fn) {
		if (pk_funcinstr_thrd_instr->parent == NULL) {
			struct pk_tmr tmr = pk_funcinstr_thrd_instr->tmr;
			pk_funcinstr_thrd_instr = pk_funcinstr_create_funcinstr(this_fn);
			pk_funcinstr_thrd_instr->tmr = tmr;
#ifdef PK_FUNCINSTR_PRINT
			fprintf(thrd_mstr.out, "[pkfuncinstr] func mismatch; Parent func? Duration not accurate.");
#endif /* PK_FUNCINSTR_PRINT */
		} else {
#ifdef PK_FUNCINSTR_PRINT
			fprintf(thrd_mstr.err, "[pkfuncinstr] func mismatch. Last: '");
			if (dladdr(pk_funcinstr_thrd_instr->fn, &info) != 0) {
				fprintf(thrd_mstr.err, "%s", info.dli_sname);
			} else {
				fprintf(thrd_mstr.err, "(unknown)");
			}
			fprintf(thrd_mstr.err, "'. Current: '");
			if (dladdr(this_fn, &info) != 0) {
				fprintf(thrd_mstr.err, "%s'.\n", info.dli_sname);
			} else {
				fprintf(thrd_mstr.err, "(unknown)'.\n");
			}
#endif /* PK_FUNCINSTR_PRINT */
			pk_funcinstr_thrd_bkt->guard_exit=0;
			return;
		}
	}

	pk_tmr_stop(pk_funcinstr_thrd_instr->tmr);
#ifdef PK_FUNCINSTR_PRINT
	if (dladdr(this_fn, &info) != 0) {
		int depth = 0;
		// TODO track depth in a better way
		struct pk_funcinstr *p = pk_funcinstr_thrd_instr->parent;
		while (p != NULL) {
			depth += 1;
			p = p->parent;
		}
		char *demangled = NULL;
		if (info.dli_sname != NULL) {
#if defined(__cplusplus)
			demangled = abi::__cxa_demangle(info.dli_sname, NULL, NULL, NULL);
#endif
		}
		fprintf(thrd_mstr.out, "[pkfuncinstr] %p %*s %s took %.6f ms\n"
			,this_fn
			,depth, ""
			,demangled != NULL ? demangled : info.dli_sname != NULL ? info.dli_sname : "???"
			,pk_tmr_duration_dbl_mili(pk_funcinstr_thrd_instr->tmr)
		);
		if (demangled != NULL) free(demangled);
	}
#endif /* PK_FUNCINSTR_PRINT */
	pk_funcinstr_thrd_bkt->guard_exit=0;
	pk_funcinstr_thrd_instr = pk_funcinstr_thrd_instr->parent;
}

#else
// other
#endif

#endif /* PK_IMPL_FUNCINSTR */
#ifndef PK_PKTST_H
#define PK_PKTST_H


typedef int (pk_test_func)();
struct pk_test_group;
typedef struct pk_test_group *(pk_test_group_get)();

typedef void (pk_test_group_setup)();
typedef void (pk_test_group_teardown)();
typedef void (pk_test_setup)();
typedef void (pk_test_teardown)();

struct pk_test {
	const char *title;
	pk_test_func *func;
	int expected_result;
};

struct pk_test_group {
	const char *title;
	pk_test_group_setup *group_setup;
	pk_test_group_teardown *group_teardown;
	pk_test_setup *test_setup;
	pk_test_teardown *test_teardown;
	struct pk_test *tests;
	unsigned char n_tests;
};

void pk_test_run_test_groups(pk_test_group_get **group_get_fns, unsigned long n_groups);

#if defined(__cplusplus)
#include <iostream>
#define PK_TEST_ASSERT_BODY(expected, value, comp)                             \
  std::cerr << "[pk-test] ";                                                   \
  std::cerr << "(" << __FILE__ << ":" << __LINE__ << ")";                      \
  std::cerr << PK_CLR_FG_RED " Failed " PK_CLR_RESET;                          \
  std::cerr << #comp " , Condition: \"";                                       \
  std::cerr << PK_CLR_FG_BRIGHT_BLUE << #value << PK_CLR_RESET;                \
  std::cerr << "\", Expected: \"";                                             \
  std::cerr << PK_CLR_FG_GREEN << (expected) << PK_CLR_RESET;                  \
  std::cerr << "\", Got: \"";                                                  \
  std::cerr << PK_CLR_FG_RED << (value) << PK_CLR_RESET;                       \
  std::cerr << "\"." << std::endl;
template<typename T>
inline bool flt_equal(T a, T b, T epsilon) {
	return abs(a - b) < epsilon;
}
#else /* __cplusplus */
#include <stdio.h>
#define PK_TEST_ASSERT_BODY(expected, value, comp)                             \
  fprintf(stderr,"[pk-test] (%s:%i) ", __FILE__, __LINE__);                    \
  fprintf(stderr,"%s ", PK_CLR_FG_RED "Failed" PK_CLR_RESET);                  \
  fprintf(stderr,#comp " : Test condition \"");                                \
  fprintf(stderr,"%s\"\n",PK_CLR_FG_BRIGHT_BLUE #value PK_CLR_RESET);
#endif /* __cplusplus */

#define PK_TEST_ASSERT_EQ(expected, value) {                                   \
  if ((value) != (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, ==)                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_EQ_RET(expected, value) {                               \
  if ((value) != (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, ==)                                   \
    return -1;                                                                 \
  }                                                                            \
}
#define PK_TEST_ASSERT_EQ_EXIT(expected, value) {                              \
  if ((value) != (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, ==)                                   \
    exit(1);                                                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_NEQ(expected, value) {                                  \
  if ((value) == (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, !=)                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_NEQ_RET(expected, value) {                              \
  if ((value) == (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, !=)                                   \
    return -1;                                                                 \
  }                                                                            \
}
#define PK_TEST_ASSERT_NEQ_EXIT(expected, value) {                             \
  if ((value) == (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, !=)                                   \
    exit(1);                                                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_GT(expected, value) {                                   \
  if ((value) <= (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, >)                                    \
  }                                                                            \
}
#define PK_TEST_ASSERT_GT_RET(expected, value) {                               \
  if ((value) <= (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, >)                                    \
    return -1;                                                                 \
  }                                                                            \
}
#define PK_TEST_ASSERT_GT_EXIT(expected, value) {                              \
  if ((value) <= (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, >)                                    \
    exit(1);                                                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_LT(expected, value) {                                   \
  if ((value) >= (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, <)                                    \
  }                                                                            \
}
#define PK_TEST_ASSERT_LT_RET(expected, value) {                               \
  if ((value) >= (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, <)                                    \
    return -1;                                                                 \
  }                                                                            \
}
#define PK_TEST_ASSERT_LT_EXIT(expected, value) {                              \
  if ((value) <= (expected)) {                                                 \
    PK_TEST_ASSERT_BODY(expected, value, <)                                    \
    exit(1);                                                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_GTE(expected, value) {                                  \
  if ((value) < (expected)) {                                                  \
    PK_TEST_ASSERT_BODY(expected, value, >=)                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_GTE_RET(expected, value) {                              \
  if ((value) < (expected)) {                                                  \
    PK_TEST_ASSERT_BODY(expected, value, >=)                                   \
    return -1;                                                                 \
  }                                                                            \
}
#define PK_TEST_ASSERT_GTE_EXIT(expected, value) {                             \
  if ((value) < (expected)) {                                                  \
    PK_TEST_ASSERT_BODY(expected, value, >=)                                   \
    exit(1);                                                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_LTE(expected, value) {                                  \
  if ((value) > (expected)) {                                                  \
    PK_TEST_ASSERT_BODY(expected, value, <=)                                   \
  }                                                                            \
}
#define PK_TEST_ASSERT_LTE_RET(expected, value) {                              \
  if ((value) > (expected)) {                                                  \
    PK_TEST_ASSERT_BODY(expected, value, <=)                                   \
    return -1;                                                                 \
  }                                                                            \
}
#define PK_TEST_ASSERT_LTE_EXIT(expected, value) {                             \
  if ((value) > (expected)) {                                                  \
    PK_TEST_ASSERT_BODY(expected, value, <=)                                   \
    exit(1);                                                                   \
  }                                                                            \
}

#ifdef PK_IMPL_TST


void pk_test_run_test_groups(pk_test_group_get **group_get_fns, unsigned long n_groups) {
	int result;
	unsigned long i;
	unsigned int k, pass_count, total_test_count, total_test_pass_count, test_group_count, test_group_pass_count;
	double elapsed_ms, group_ms, total_ms;
	struct pk_tmr func_tmr, total_tmr;
	struct pk_test_group *group;

	fprintf(stdout, "\r\n");
	fprintf(stdout, "[pk-test] Begin..\n");
	fprintf(stdout, "[pk-test] Running %04ld tests..\n", n_groups);

	i = 0;
	total_ms = 0;
	total_test_count = 0;
	total_test_pass_count = 0;
	test_group_count = 0;
	test_group_pass_count = 0;
	pk_tmr_start(total_tmr);
	fprintf(stdout, "\r\n");
	for (i = 0; i < n_groups; ++i) {
		test_group_count += 1;
		pass_count = 0;
		group_ms = 0;
		group = group_get_fns[i]();
		fprintf(stdout, "[pk-test][%s] Begin..\n", group->title);
		if (group->group_setup != NULL) (group->group_setup)();
		for (k = 0; k < group->n_tests; ++k) {
			total_test_count += 1;
			fprintf(stdout, "[pk-test][%s][%s] Begin..\n", group->title, group->tests[k].title);
			if (group->test_setup != NULL) (group->test_setup)();
			pk_tmr_start(func_tmr);
			result = (group->tests[k].func)();
			pk_tmr_stop(func_tmr);
			elapsed_ms = pk_tmr_duration_dbl_mili(func_tmr);
			fprintf(stdout, "[pk-test][%s][%s] End.\n", group->title, group->tests[k].title);
			group_ms += elapsed_ms;
			total_ms += elapsed_ms;
			fprintf(stdout, "[pk-test][%s][%s] Elapsed ms: '%f'.\n", group->title, group->tests[k].title, elapsed_ms);
			if (result == group->tests[k].expected_result){
				total_test_pass_count += 1;
				pass_count += 1;
				fprintf(stdout, "[pk-test][%s][%s] %sPassed.%s\n", group->title, group->tests[k].title, PK_CLR_FG_GREEN, PK_CLR_RESET);
			} else {
				fprintf(stdout, "[pk-test][%s][%s] %sFailed.%s\n", group->title, group->tests[k].title, PK_CLR_FG_RED, PK_CLR_RESET);
				fprintf(stdout, "[pk-test][%s][%s] Expected: '" PK_CLR_FG_GREEN "%i" PK_CLR_RESET "', Got: '" PK_CLR_FG_RED "%i" PK_CLR_RESET "'.\n", group->title, group->tests[k].title, group->tests[k].expected_result, result);
			}
			if (group->test_teardown != NULL) (group->test_teardown)();
		}
		if (group->group_teardown != NULL) (group->group_teardown)();
		fprintf(stdout, "[pk-test][%s] End.\n", group->title);
		fprintf(stdout, "[pk-test][%s] Tests completed: ( %s%04d%s / %04d ).\n", group->title, pass_count == group->n_tests ? PK_CLR_FG_GREEN : PK_CLR_FG_RED, pass_count, PK_CLR_RESET, group->n_tests);
		fprintf(stdout, "[pk-test][%s] Elapsed ms: '%f'.\n\n", group->title, group_ms);
		if (pass_count == group->n_tests) {
			test_group_pass_count += 1;
		}
	}
	pk_tmr_stop(total_tmr);

	fprintf(stdout, "[pk-test] End.\n");
	fprintf(stdout, "[pk-test] Tests completed:       ( %s%04d%s / %04d ).\n", total_test_count == total_test_pass_count ? PK_CLR_FG_GREEN : PK_CLR_FG_RED, total_test_pass_count, PK_CLR_RESET, total_test_count);
	fprintf(stdout, "[pk-test] Test groups completed: ( %s%04d%s / %04d ).\n", test_group_count == test_group_pass_count ? PK_CLR_FG_GREEN : PK_CLR_FG_RED, test_group_pass_count, PK_CLR_RESET, test_group_count);
	fprintf(stdout, "[pk-test] Elapsed ms: '%f' (test fn sum).\n", total_ms);
	fprintf(stdout, "[pk-test] Elapsed ms: '%f' (actual).\n\n", pk_tmr_duration_dbl_mili(total_tmr));
}

#endif /* PK_IMPL_TST */

#endif /* PK_PKTST_H */
#endif /* PK_SINGLE_HEADER_FILE_H */