1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
#include "memory.hpp"
const std::size_t MINIMUM_ALIGNMENT = 1;
const std::size_t MAXIMUM_ALIGNMENT = 64;
struct MemBlock {
char *data;
std::size_t size;
};
struct MemBucket {
int64_t size;
int64_t head;
int64_t lostBytes;
int64_t allocs;
int64_t lastEmptyBlockIndex;
int64_t maxBlockCount;
char *blocks;
char *ptr;
bool transient;
};
MemBucket buckets[128];
int64_t bucketHead = 0;
int64_t InitNewBucket(int64_t sz, bool transient = false) {
int64_t blockCount = sz * 0.01;
auto &bkt = buckets[bucketHead];
bkt.size = sz;
bkt.head = 0;
bkt.lostBytes = 0;
bkt.allocs = 0;
bkt.lastEmptyBlockIndex = -1;
bkt.maxBlockCount = blockCount < 10 ? 10 : blockCount;
bkt.blocks = reinterpret_cast<char *>(std::malloc(sz));
bkt.ptr = bkt.blocks + (sizeof(MemBlock) * bkt.maxBlockCount);
size_t misalignment = reinterpret_cast<uint64_t>(bkt.ptr) % MAXIMUM_ALIGNMENT;
if (misalignment != 0) {
size_t moreBlocks = misalignment / sizeof(MemBlock);
bkt.maxBlockCount += moreBlocks;
bkt.ptr += (MAXIMUM_ALIGNMENT - misalignment);
}
bkt.transient = transient;
auto *memBlock = reinterpret_cast<MemBlock *>(bkt.blocks);
memBlock->data = bkt.ptr;
memBlock->size = sz - (sizeof(MemBlock) * bkt.maxBlockCount);
return bucketHead++;
}
void DestroyBucket(MemBucket *bkt) {
std::free(bkt->blocks);
bkt->size = 0;
bkt->head = 0;
bkt->lostBytes = 0;
bkt->allocs = 0;
bkt->lastEmptyBlockIndex = -1;
bkt->maxBlockCount = 0;
bkt->blocks = CAFE_BABE(char);
bkt->ptr = CAFE_BABE(char);
bkt->transient = false;
}
void *Pke_New(std::size_t sz, std::size_t alignment, MemBucket *bkt) {
MemBlock *blocks = reinterpret_cast<MemBlock *>(bkt->blocks);
std::size_t calculatedAlignment = alignment < MINIMUM_ALIGNMENT ? MINIMUM_ALIGNMENT : alignment;
std::size_t misalignment = 0;
long index = -1;
MemBlock *block = nullptr;
void *data = nullptr;
for (int64_t i = 0; i <= bkt->lastEmptyBlockIndex; ++i) {
auto &blk = blocks[i];
misalignment = reinterpret_cast<std::size_t>(blk.data) % calculatedAlignment;
misalignment = (calculatedAlignment - misalignment) % calculatedAlignment;
if (blk.size >= sz + misalignment) {
index = i;
block = &blk;
break;
}
}
if (block != nullptr) {
MemBlock *nextBlock = &blocks[index + 1];
bool touchesValidNeighbor = index != bkt->lastEmptyBlockIndex && nextBlock->data == block->data + block->size;
data = block->data + misalignment;
if (misalignment) {
size_t afterSize = block->size - misalignment - sz;
block->size = misalignment;
if (afterSize) {
if (index == bkt->maxBlockCount) {
bkt->lostBytes += afterSize;
} else if (touchesValidNeighbor) {
nextBlock->data -= afterSize;
nextBlock->size += afterSize;
} else {
if (index != bkt->lastEmptyBlockIndex) {
long moveCount = bkt->lastEmptyBlockIndex - index;
if (moveCount > 0) {
char *beforePos = bkt->blocks + (sizeof(MemBlock) * (index + 1));
char *afterPos = bkt->blocks + (sizeof(MemBlock) * (index + 2));
memmove(afterPos, beforePos, sizeof(MemBlock) * moveCount);
}
}
bkt->lastEmptyBlockIndex += 1;
nextBlock->data = block->data + misalignment + sz;
nextBlock->size = afterSize;
}
}
} else {
size_t afterSize = block->size - sz;
if (afterSize && !touchesValidNeighbor) {
block->data += sz;
block->size -= sz;
} else {
if (afterSize && touchesValidNeighbor) {
nextBlock->data -= afterSize;
nextBlock->size += afterSize;
}
long moveCount = bkt->lastEmptyBlockIndex - index;
if (moveCount > 0) {
char *beforePos = bkt->blocks + (sizeof(MemBlock) * (index + 1));
char *afterPos = bkt->blocks + (sizeof(MemBlock) * (index + 0));
memmove(afterPos, beforePos, sizeof(MemBlock) * moveCount);
bkt->lastEmptyBlockIndex -= 1;
}
}
}
} else {
assert(bkt->head + sz <= bkt->size && "memory bucket specified, but full");
misalignment = reinterpret_cast<std::size_t>(bkt->ptr + bkt->head) % calculatedAlignment;
misalignment = (calculatedAlignment - misalignment) % calculatedAlignment;
if (misalignment != 0) {
if (bkt->lastEmptyBlockIndex == bkt->maxBlockCount) {
bkt->lostBytes += misalignment;
} else {
bkt->lastEmptyBlockIndex += 1;
blocks[bkt->lastEmptyBlockIndex].data = bkt->ptr + bkt->head;
blocks[bkt->lastEmptyBlockIndex].size = misalignment;
}
bkt->head = bkt->head + misalignment;
}
data = bkt->ptr + bkt->head;
bkt->head = bkt->head + sz;
}
bkt->allocs++;
assert(data >= bkt->ptr && "allocated data is before bucket data");
assert(data <= bkt->ptr + bkt->size && "allocated data is after bucket data");
return data;
}
void *Pke_New(std::size_t sz, std::size_t alignment) {
MemBucket *bkt = nullptr;
for (long i = 0; i < bucketHead; ++i) {
if (buckets[i].transient == false && buckets[i].size - buckets[i].head > sz + MAXIMUM_ALIGNMENT) {
bkt = &buckets[i];
}
}
if (bkt == nullptr) {
bkt = &buckets[InitNewBucket(DEFAULT_BUCKET_SIZE)];
}
return Pke_New(sz, alignment, bkt);
}
void inline Pke_CollapseEmptyBlocksToHead(MemBucket *bkt) {
MemBlock *blocks = reinterpret_cast<MemBlock *>(bkt->blocks);
while (bkt->lastEmptyBlockIndex > -1) {
MemBlock *lastBlock = &blocks[bkt->lastEmptyBlockIndex];
if (lastBlock->data + lastBlock->size != bkt->ptr + bkt->head) {
return;
}
bkt->head -= lastBlock->size;
lastBlock->data = 0;
lastBlock->size = 0;
bkt->lastEmptyBlockIndex -= 1;
}
}
void inline Pke_CollapseBlocks(MemBucket *bkt) {
MemBlock *blocks = reinterpret_cast<MemBlock *>(bkt->blocks);
long skipDistance = 1;
long lastStartingIndex = 0;
for (long i = 0; i <= bkt->lastEmptyBlockIndex - 1; ++i) {
lastStartingIndex = i;
MemBlock &block = blocks[i];
MemBlock &nextBlock = blocks[i + skipDistance];
if (block.data + block.size == nextBlock.data) {
block.size += nextBlock.size;
nextBlock.size = 0;
skipDistance += 1;
i -= 1;
} else {
if (skipDistance > 1) {
char *beforePos = bkt->blocks + (sizeof(MemBlock) * (i + skipDistance));
char *afterPos = bkt->blocks + (sizeof(MemBlock) * (i + 1));
memmove(afterPos, beforePos, sizeof(MemBlock) * (skipDistance - 1));
bkt->lastEmptyBlockIndex -= (skipDistance - 1);
}
i += skipDistance - 1;
skipDistance = 1;
}
}
if (skipDistance > 1) {
char *beforePos = bkt->blocks + (sizeof(MemBlock) * (lastStartingIndex + skipDistance));
char *afterPos = bkt->blocks + (sizeof(MemBlock) * (lastStartingIndex + 1));
memmove(afterPos, beforePos, sizeof(MemBlock) * (skipDistance - 1));
bkt->lastEmptyBlockIndex -= (skipDistance - 1);
}
}
void Pke_Delete(const void *ptr, std::size_t sz, MemBucket *bkt) {
assert(ptr >= bkt->ptr && ptr < bkt->ptr + bkt->size && "pointer not in memory bucket range");
bkt->allocs--;
if (bkt->allocs == 0) {
bkt->head = 0;
bkt->lastEmptyBlockIndex = -1;
return;
}
if (ptr == bkt->ptr + bkt->head - sz) {
bkt->head -= sz;
Pke_CollapseEmptyBlocksToHead(bkt);
return;
}
MemBlock *blocks = reinterpret_cast<MemBlock *>(bkt->blocks);
size_t prevBlockIndex = 0xFFFFFFFFFFFFFFFF;
void *prevPointer = reinterpret_cast<void *>(prevBlockIndex);
bool found = false;
for (int64_t i = 0; i <= bkt->lastEmptyBlockIndex; ++i) {
auto &blk = blocks[i];
if (blk.data < ptr && prevPointer < blk.data) {
prevBlockIndex = i;
prevPointer = blk.data;
}
if (blk.data == reinterpret_cast<const char *>(ptr) + sz) {
blk.data -= sz;
blk.size += sz;
found = true;
break;
}
if (reinterpret_cast<const char *>(ptr) == blk.data + blk.size ) {
blk.size += sz;
found = true;
break;
}
}
if (found == false) {
if (bkt->lastEmptyBlockIndex == bkt->maxBlockCount) {
bkt->lostBytes += sz;
} else {
MemBlock *targetBlock = nullptr;
if (prevBlockIndex < bkt->lastEmptyBlockIndex) {
long moveCount = bkt->lastEmptyBlockIndex - prevBlockIndex;
assert(moveCount > 0);
char *beforePos = bkt->blocks + (sizeof(MemBlock) * (prevBlockIndex + 1));
char *afterPos = bkt->blocks + (sizeof(MemBlock) * (prevBlockIndex + 2));
memmove(afterPos, beforePos, sizeof(MemBlock) * moveCount);
targetBlock = &blocks[prevBlockIndex + 1];
} else {
targetBlock = &blocks[bkt->lastEmptyBlockIndex + 1];
}
bkt->lastEmptyBlockIndex += 1;
targetBlock->data = reinterpret_cast<char *>(const_cast<void *>(ptr));
targetBlock->size = sz;
}
}
Pke_CollapseBlocks(bkt);
Pke_CollapseEmptyBlocksToHead(bkt);
}
void Pke_Delete(const void *ptr, std::size_t sz) {
MemBucket *bkt = nullptr;
for (long i = 0; i < bucketHead; ++i) {
bkt = &buckets[i];
if (ptr >= bkt->ptr && ptr < bkt->ptr + bkt->size) break;
}
assert(bkt != nullptr && "failed to determine correct memory bucket");
Pke_Delete(ptr, sz, bkt);
}
MemBucket *Pke_BeginTransientBucket(int64_t sz) {
return &buckets[InitNewBucket(sz, true)];
}
void Pke_EndTransientBucket(MemBucket *bkt) {
int64_t foundIndex = -1;
for (int64_t i = 0; i < bucketHead; ++i) {
if (&buckets[i] == bkt) {
foundIndex = i;
DestroyBucket(&buckets[i]);
break;
}
}
if (foundIndex == bucketHead) {
bucketHead--;
}
}
void Pke_MemoryFlush() {
for (long i = bucketHead - 2; i > -1; --i) {
if (buckets[i].head != 0) break;
if (buckets[i+1].head != 0) break;
if (buckets[i].transient == true) break;
if (buckets[i+1].transient == true) break;
bucketHead--;
DestroyBucket(&buckets[i + 1]);
}
}
uint64_t Buckets_NewHandle(std::size_t bucketBytes, std::size_t alignment, uint64_t bucketItemCount, uint64_t &bucketIncrementer, uint64_t &bucketCounter, uint64_t &itemCounter, void*& buckets) {
uint64_t newHandle{itemCounter | bucketCounter};
std::size_t calculatedAlignment = alignment < MINIMUM_ALIGNMENT ? MINIMUM_ALIGNMENT : alignment;
itemCounter += uint64_t{1ULL << 32};
if (itemCounter > uint64_t{(bucketItemCount - 1) << 32}) {
itemCounter = 0ULL;
bucketCounter += 1;
}
if (bucketCounter > bucketIncrementer) {
int64_t newIncrement = bucketIncrementer * 1.5;
char * newBuckets = reinterpret_cast<char *>(Pke_New(bucketBytes * newIncrement, calculatedAlignment));
std::memcpy(newBuckets, buckets, bucketBytes * bucketIncrementer);
Pke_Delete(buckets, bucketBytes * bucketIncrementer);
buckets = newBuckets;
bucketIncrementer = newIncrement;
}
return newHandle;
}
void Pke_DebugPrint() {
printf("Memory Manager printout:\nBucket count: %li\n", bucketHead);
for (long i = 0; i < bucketHead; ++i) {
printf("- bucket #%li\n", i);
printf("\tsize: %li\n", buckets[i].size);
printf("\thead: %li\n", buckets[i].head);
printf("\tlostBytes: %li\n", buckets[i].lostBytes);
printf("\tallocs: %li\n", buckets[i].allocs);
printf("\tlastEmptyBlockIndex: %li\n", buckets[i].lastEmptyBlockIndex);
printf("\tmaxBlockCount: %li\n", buckets[i].maxBlockCount);
printf("\tblocks: %p\n", buckets[i].blocks);
printf("\tptr: %p\n", buckets[i].ptr);
printf("\ttransient: %i\n", buckets[i].transient);
}
}
|