1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
#include "asset-manager.hpp"
#include "audio-impl-shared.hpp"
#include "audio.hpp"
#include "ecs.hpp"
#include "game-settings.hpp"
#include "math-helpers.hpp"
#include "pk.h"
#include "window.hpp"
#include <chrono>
#ifdef PKE_AUDIO_IMPL_PIPEWIRE
#include "audio-impl-pw.hpp"
#endif
struct pke_audio_master pke_audio_mstr{};
void pke_audio_process_frames(int64_t frame_count);
void pke_audio_init() {
pke_audio_mstr.master_volume = 1.f;
pke_audio_mstr.channel_count = 2;
// pke_audio_mstr.last_tick_tp = {};
pke_audio_mstr.last_tick_tp = pkeSettings.steadyClock.now();
pke_audio_mstr.bkt= pk_mem_bucket_create("pke_audio", PK_MEM_DEFAULT_BUCKET_SIZE, PK_MEMBUCKET_FLAG_NONE);
for (uint8_t i = 0; i < pke_audio_mstr.channel_count; ++i) {
pke_audio_mstr.source_volumes[i] = 1.f;
}
pke_audio_mstr.buffer_size = PKE_AUDIO_BUFFER_FRAMES * pke_audio_mstr.channel_count * sizeof(float);
pke_audio_mstr.buffer_frames = 0;
pke_audio_mstr.elapsed_ns = 0;
pke_audio_mstr.buffer = pk_new_arr<float>(pke_audio_mstr.buffer_size, pke_audio_mstr.bkt);
#ifdef PKE_AUDIO_IMPL_PIPEWIRE
pke_audio_pw_init();
#endif
}
void pke_audio_teardown() {
#ifdef PKE_AUDIO_IMPL_PIPEWIRE
pke_audio_pw_teardown();
#endif
pke_audio_stop_all();
pk_arr_reset(&pke_audio_mstr.playing_objects);
pk_delete_arr<float>(pke_audio_mstr.buffer, pke_audio_mstr.buffer_size, pke_audio_mstr.bkt);
pk_mem_bucket_destroy(pke_audio_mstr.bkt);
pke_audio_mstr.bkt = nullptr;
pke_audio_mstr.master_volume = 0;
memset(&pke_audio_mstr.source_volumes, 0, sizeof(pke_audio_mstr.source_volumes[0]) * pke_audio_source_T_MAX);
pke_audio_mstr.channel_count = 0;
pke_audio_mstr.buffer = nullptr;
pke_audio_mstr.buffer_frames = 0;
pke_audio_mstr.elapsed_ns = 0;
pke_audio_mstr.last_tick_tp = {};
}
void pke_audio_tick(double delta) {
(void)delta;
uint32_t i, k;
#ifdef PKE_AUDIO_IMPL_PIPEWIRE
if (pke_audio_pw.is_needing_output_remapped == true) {
pke_audio_pw_remap_outputs();
pke_audio_mstr.last_tick_tp = pkeSettings.steadyClock.now();
return;
}
#endif
pke_audio_mstr.mtx_buffer.lock();
for (i = 0; i < pke_audio_mstr.playing_objects.next; ++i) {
for (k = 0; k < pke_audio_mstr.playing_objects[i].play_count; ++k) {
if (pke_audio_mstr.playing_objects[i].instance_handle[k] == InstanceHandle_MAX) {
continue;
}
CompInstance *inst = ECS_GetInstance(pke_audio_mstr.playing_objects[i].instance_handle[k]);
if (inst == nullptr || inst->instanceHandle == InstanceHandle_MAX) {
continue;
}
BulletToGlm(
inst->bt.rigidBody->getWorldTransform().getOrigin(),
pke_audio_mstr.playing_objects[i].position_source[k]
);
}
}
constexpr int64_t ns_per_bit_chunk = std::chrono::nanoseconds::period::den / 4000;
constexpr int64_t bits_per_chunk = PKE_AUDIO_BITRATE / 4000;
std::chrono::time_point<std::chrono::steady_clock> tp_now = pkeSettings.steadyClock.now();
auto diff = (tp_now - pke_audio_mstr.last_tick_tp).count();
pke_audio_mstr.elapsed_ns += diff;
int64_t frame_count = floor((pke_audio_mstr.elapsed_ns / ns_per_bit_chunk)) * bits_per_chunk;
if (frame_count > 0) {
// fprintf(stdout, "[pw_tick] frame_count: %li, running_count: %li, elapsed_ns: %li\n", frame_count, pke_audio_mstr.buffer_frames, pke_audio_mstr.elapsed_ns);
pke_audio_process_frames(frame_count);
pke_audio_mstr.elapsed_ns %= ns_per_bit_chunk;
}
pke_audio_mstr.last_tick_tp = tp_now;
pke_audio_mstr.mtx_buffer.unlock();
}
float pke_audio_get_volume(pke_audio_source source) {
return pke_audio_mstr.source_volumes[static_cast<pke_audio_source_T>(source)];
}
void pke_audio_set_volume(pke_audio_source source, float volume) {
pke_audio_mstr.source_volumes[static_cast<pke_audio_source_T>(source)] = volume;
}
bool pke_audio_playing_objects_find_first_by_key(void *user_data, void *arr_data) {
std::tuple<AssetHandle, pke_audio_source> &tup = *reinterpret_cast<std::tuple<AssetHandle, pke_audio_source>*>(user_data);
pke_audio_obj &audio_obj = *reinterpret_cast<pke_audio_obj*>(arr_data);
return std::get<0>(tup) == audio_obj.handle && std::get<1>(tup) == audio_obj.source;
}
void pke_audio_play(AssetHandle handle, pke_audio_source audio_source, pke_audio_flags flags, glm::vec3 position_source, InstanceHandle instance_handle) {
// TODO validation: audio length (does it fit in uint32_t), etc
// TODO rethink threading: first-pass only mutex
std::tuple<AssetHandle, pke_audio_source> tup {handle, audio_source};
pke_audio_mstr.mtx_buffer.lock();
int64_t idx = (int64_t)pk_arr_find_first_index(&pke_audio_mstr.playing_objects, &tup, pke_audio_playing_objects_find_first_by_key);
pke_audio_obj *aobj = NULL;
if (idx == uint32_t(-1)) {
AM_Get(handle); // keep the asset in memory, freed when play_count hits 0
pk_arr_append_t(&pke_audio_mstr.playing_objects, {});
aobj = &pke_audio_mstr.playing_objects[pke_audio_mstr.playing_objects.next-1];
memset(aobj, 0, sizeof(pke_audio_obj));
aobj->handle = handle;
aobj->source = audio_source;
aobj->play_count = 1;
idx = 0;
} else {
aobj = &pke_audio_mstr.playing_objects[idx];
idx = aobj->play_count;
aobj->play_count += 1;
}
assert(idx >= 0 && idx < PKE_AUDIO_MAX_CONCURRENT_COUNT);
aobj->instance_handle[idx] = instance_handle;
aobj->position_source[idx] = position_source;
aobj->flags[idx] = flags;
aobj->play_heads[idx] = 0;
pke_audio_mstr.mtx_buffer.unlock();
}
void pke_audio_stop_all() {
// TODO fade-out instead of hard-cut? Maybe that should be a separate function.
uint32_t u;
pke_audio_mstr.mtx_buffer.lock();
for (u = 0; u < pke_audio_mstr.playing_objects.next; ++u) {
AM_Release(pke_audio_mstr.playing_objects[u].handle);
}
pk_arr_clear(&pke_audio_mstr.playing_objects);
pke_audio_mstr.mtx_buffer.unlock();
}
void pke_audio_process_frames(int64_t frame_count) {
uint8_t pc, pc2;
uint32_t i, ii, c;
int64_t i_frame;
float *dst;
float val, vol, vol2, dot, dot2;
glm::vec3 listener_origin;
glm::vec3 audio_dir = glm::vec3(0);
float *spatial_volumes = nullptr;
glm::vec3 *spatial_normals = nullptr;
pke_audio_fx_params_reverb *params_reverb = nullptr;
pke_audio_fx_params_delay *params_delay = nullptr;
pke_audio_fx_params_low_pass_filter *params_low_pass_filter = nullptr;
int64_t stride = pke_audio_mstr.channel_count * sizeof(float);
frame_count = PK_MIN(frame_count, (pke_audio_mstr.buffer_size / stride) - pke_audio_mstr.buffer_frames);
// init
spatial_volumes = pk_new_arr<float>(pke_audio_mstr.channel_count, pkeSettings.mem_bkt.game_transient);
spatial_normals = pk_new_arr<glm::vec3>(pke_audio_mstr.channel_count, pkeSettings.mem_bkt.game_transient);
params_reverb = pk_new_arr<pke_audio_fx_params_reverb>(pke_audio_mstr.channel_count, pkeSettings.mem_bkt.game_transient);
params_delay = pk_new_arr<pke_audio_fx_params_delay>(pke_audio_mstr.channel_count, pkeSettings.mem_bkt.game_transient);
params_low_pass_filter = pk_new_arr<pke_audio_fx_params_low_pass_filter>(pke_audio_mstr.channel_count, pkeSettings.mem_bkt.game_transient);
dst = pke_audio_mstr.buffer + (pke_audio_mstr.buffer_frames * pke_audio_mstr.channel_count);
// calculate spatial_normals
// TODO maybe don't use UBO
// TODO project-defined?
// TODO instanced audio manager? (easier to handle explicit stereo sources?)
listener_origin = glm::inverse(UBO.model) * glm::vec4(0, 0, 0, 1);
for (c = 0; c < pke_audio_mstr.channel_count; ++c) {
switch (c) {
case 0:
// left-speaker
if (pke_audio_mstr.channel_count > 2) {
spatial_normals[c] = glm::normalize(glm::vec3(-1.f, 0.f, 1.f));
} else {
spatial_normals[c] = glm::normalize(glm::vec3(-1.f, 0.f, 0.f));
}
break;
case 1:
// right
if (pke_audio_mstr.channel_count > 2) {
spatial_normals[c] = glm::normalize(glm::vec3( 1.f, 0.f, 1.f));
} else {
spatial_normals[c] = glm::normalize(glm::vec3( 1.f, 0.f, 0.f));
}
break;
case 2:
// center
spatial_normals[c] = glm::normalize(glm::vec3( 0.f, 0.f, 1.f));
break;
case 3:
// subwoofer
spatial_normals[c] = glm::normalize(glm::vec3( 0.f, 0.f, 0.f));
break;
case 4:
// left surround
spatial_normals[c] = glm::normalize(glm::vec3(-1.f, 0.f, 0.f));
break;
case 5:
// right surround
spatial_normals[c] = glm::normalize(glm::vec3( 1.f, 0.f, 0.f));
break;
case 6:
// rear left surround
spatial_normals[c] = glm::normalize(glm::vec3(-1.f, 0.f, -1.f));
break;
case 7:
// rear right surround
spatial_normals[c] = glm::normalize(glm::vec3( 1.f, 0.f, -1.f));
break;
default:
break;
}
}
if (pke_audio_mstr.playing_objects.next == 0) {
memset(dst, 0, sizeof(float) * frame_count * pke_audio_mstr.channel_count);
}
// calculate
for (i = 0; i < pke_audio_mstr.playing_objects.next; ++i) {
pke_audio_obj *aobj = &pke_audio_mstr.playing_objects[i];
const Asset *a = AM_Get(aobj->handle);
vol = 1.0;
vol *= pke_audio_mstr.master_volume;
vol *= pke_audio_mstr.source_volumes[static_cast<pke_audio_source_T>(aobj->source)];
for (pc = 0; pc < aobj->play_count; ++pc) {
// TODO configurable
// >= 5.0 meters is 100% volume
// <=50.0 meters is 0% volume
float distance_volume = glm::distance(aobj->position_source[pc], listener_origin);
distance_volume = 1.0 - ((distance_volume - 5.0) / 50 - 5);
distance_volume = glm::clamp(distance_volume, 0.f, 1.f);
// calculate panning
// TODO handle subwoofer explicitly
// float sum = 0.0;
for (c = 0; c < pke_audio_mstr.channel_count; ++c) {
audio_dir = glm::normalize(aobj->position_source[pc] - listener_origin);
for (ii = 0; ii < 3; ++ii) {
if (glm::isnan(audio_dir[ii])) {
audio_dir = glm::vec3(0);
spatial_volumes[c] = 1.f;
break;
}
}
dot = glm::dot(glm::vec3(0.f, 0.f, 1.f), audio_dir);
dot2 = glm::dot(spatial_normals[c], audio_dir);
params_low_pass_filter[c].cutoff_freq = 0.f;
params_reverb[c].reverb_strength = 0.f; // TODO
params_delay[c].delay_frames = 0; // TODO
spatial_volumes[c] = PK_CLAMP(dot2, 0.f, 1.f);
if (pke_audio_mstr.channel_count == 2) {
/* 2025-07-15 JCB
* I changed this to always calculate for "forward".
* I believe this is only needed if channel_count == 2; this is to simulate surround through stereo (headphones).
* If the user is actually using surround sound, their own ears will do this.
*/
if (!glm::isnan(dot)) {
val = (dot + 1.f) / 2.f; // padding lerp val
spatial_volumes[c] = PK_CLAMP(dot2 + lerp(0.5, 1.f, val) + 0.05, 0.0f, 1.f);
if (dot < 0.0) {
// 20k max, 500 min
params_low_pass_filter[c].cutoff_freq = log_interp(40000.f, 500.f, abs(dot));
}
}
}
/*
fprintf(stdout, "[pw] normal: % 02.0f,% 02.0f, audio_dir: % 02.6f,% 02.6f, dot: % 02.6f, dot2: % 02.6f, dot3: % 02.6f, cutoff: % 5.6f, spatial_volumes:% 02.6f\n",
spatial_normals[c].x, spatial_normals[c].z,
audio_dir.x, audio_dir.z,
dot, dot2, dot + dot2, params_low_pass_filter[c].cutoff_freq, spatial_volumes[c]);
*/
if (isnan(spatial_volumes[c])) {
/*
* || spatial_volumes[c] == 0.0f
fprintf(stderr, "[pw] NaN or 0: chan: %i, norm: %f,%f,%f, src: %f,%f,%f, origin: %f,%f,%f\n",
c,
audio_dir.x, audio_dir.y, audio_dir.z,
aobj->position_source[pc].x, aobj->position_source[pc].y, aobj->position_source[pc].z,
listener_origin.x, listener_origin.y, listener_origin.z
);
*/
spatial_volumes[c] = 1.0;
}
// sum += spatial_volumes[c];
}
// normalize (TODO do we want this?)
/*
if (sum > 1.f) {
for (c = 0; c < pke_audio_mstr.channel_count; ++c) {
spatial_volumes[c] /= sum;
}
}
*/
/*
for (c = 0; c < pke_audio_mstr.channel_count; ++c) {
fprintf(stderr, "[pw] obj: %i, chan: %i vol: %f, spatial: %f, dist: %f\n",
i, c, vol, spatial_volumes[c], distance_volume
);
}
*/
for (i_frame = 0; i_frame < frame_count; ++i_frame) {
dst = pke_audio_mstr.buffer + (pke_audio_mstr.buffer_frames * pke_audio_mstr.channel_count);
int64_t buffer_idx_advance = (i_frame * (int64_t)pke_audio_mstr.channel_count);
// fprintf(stdout, "[pw] frame_count: %li, buffer_idx_advance : %li\n", frame_count, buffer_idx_advance);
dst += buffer_idx_advance; // advance
for (c = 0; c < pke_audio_mstr.channel_count; ++c) {
if (i == 0 && pc == 0) { *dst = 0.f; } // clear buffer as we go
vol2 = vol;
if (PK_HAS_FLAG(aobj->flags[pc], pke_audio_flag_pos_spatial)) {
vol2 *= (spatial_volumes[c] * distance_volume);
}
if (vol2 <= 0.0) {
// fprintf(stderr, "[pw] chan: %i vol2 is <= 0.0\n", c);
dst += 1;
continue;
}
/*
if (isnan(vol2)) {
fprintf(stderr, "[pw] vol2 is NaN\n");
}
if (vol2 == 0.0) {
fprintf(stderr, "[pw] vol2 is 0, %f, %f, %f\n", pke_audio_mstr.master_volume, pke_audio_mstr.source_volumes[c], spatial_volumes[c]);
}
*/
// val = ((float*)a->ptr)[aobj->play_heads[pc]]; // val is read inside fx_low_pass_filter
val = pke_audio_fx_low_pass_filter((float*)a->ptr, a->size / sizeof(float), (uint32_t)aobj->play_heads[pc], ¶ms_low_pass_filter[c]);
val += pke_audio_fx_reverb((float*)a->ptr, a->size / sizeof(float), (uint32_t)aobj->play_heads[pc], ¶ms_reverb[c]);
val += pke_audio_fx_delay((float*)a->ptr, a->size / sizeof(float), (uint32_t)aobj->play_heads[pc], ¶ms_delay[c]);
*dst += val * vol2;
/*
if (isnan(*dst)) {
fprintf(stderr, "[pw] *dst is NaN\n");
}
*/
dst += 1;
}
// TODO type-specific attributes for assets so we can pre-calculate this or just KNOW the frame length ahead of time
aobj->play_heads[pc] += 1;
if (aobj->play_heads[pc] >= a->size / sizeof(float)) {
for (pc2 = 0; pc + pc2 + 1 < aobj->play_count; ++pc2) {
aobj->instance_handle[pc+pc2] = aobj->instance_handle[pc+pc2+1];
aobj->position_source[pc+pc2] = aobj->position_source[pc+pc2+1];
aobj->flags[pc+pc2] = aobj->flags[pc+pc2+1];
aobj->play_heads[pc+pc2] = aobj->play_heads[pc+pc2+1];
}
pc -= 1;
aobj->play_count -= 1;
break;
}
}
}
AM_Release(aobj->handle);
if (aobj->play_count == 0) {
AM_Release(aobj->handle);
pk_arr_remove_at(&pke_audio_mstr.playing_objects, i);
i -= 1;
}
}
pke_audio_mstr.buffer_frames += frame_count;
}
|